The 28th

LSI DESIGN

CONTEST
in OKINAWA 2025

(BEENNEE VAT LAREEII—IURIYL)

2025FE AV FAMT ="
Variational Autoencoder

B SH7E3ATAG)
pBEAED. BLWDEYs—
T LSITHFMVIAVTANEITZEAR, BEBRNNERIATLHAREYS—
HE: MRKRPITEE, AN ITEXRFRBIFE

B BF T/ MAEXHE (BFREERTE), $H77- L=t
EFIRBRBEFEAV-MUTAATAFIATLHRE,

®E: AMBRENBRAZEXER, HEBEENRREXER, CoHilRtt

http://www.Isi—contest.com

©098free

HR
LSI 754 a2 TR MEE
2025 E£IAVTR FF—V

8.

9.

10.

11.

TYOY— KX TyF
B2 P
NTHREER

Taki

Imakawa
BRIAD/INUI=E
SISLAB Junior

Tugas TTKI

Point Cloud Designer
Arrhythmia Detector

L DFWNER

IHER SR AE NRAFE R
JUNTRKE FHRIFS
FUMBEEERE AR KR
IHER SR AE NRAFE R
JUNTRKE FHRIFS
FUMEBEEERE NFARER AR
Vietnam National University
Bandung Institute of Technology
FEXRF ITF BEITFR
Bandung Institute of Technology

FERFRFR MEETPN

01

03

06

10

16

21

26

32

36

42

48

54

59

The 28 th LSI Design Contest in Okinawa 2025

OVT A MOEE - BY

UM « PRRES BICHRET T 27 M-8R PESE RS K ONHINAIMES S DT L 7 b= APEZEOIRRLE A,
EEEOSERT Ot 7 A MemFER L TR 9, B, FERT JOYUN TEERFEOHE Tk 3
BISITHA a7 A MNATERATHEMLTERY £9°, 20254F1%, ERNANEZEDT04 (255 —24) &G
ERH F LIz,

WS LU R RO LST EEFEMLS . Oul, @E, &, PE, o R—n, 740y, v
—)T MR OEERATSROFEIZ 40 $ZZ Dm0 = T 2H L TEY JUNBLEO AR IS FEA).
ZOHNNET DRI ZE D E T RAT ¥ U ADRKEESN SO EHIFFSIET, %9 LI HBRATSomH#RIC
T, FAEMT IS a2 T A MEEML, FETRDOREOT L P=T OGATVE EFHZ Li2ih, [
SHNITHESHFE 7 27 CORFERERAN L T v —HEICORT TN EB X TBY 7,

AEN, AT O—>TdH5D [Autoencoder] N T —=I2720 £, WEROEHAl, [FIEEHUEOEEE B L7=/
— RO TREHRE, WAWARTATTNVEEND Z L 2L TRY 9

KarTANOEFE TERIEE . 2 OFAEORERE (BE, KPE, KBk OSMESREL Tk Y £

SR ORERS R

BT, THRF, JUNTIERT:, RHRT RO TR, wh

o R IBIR AR, IR TR, RO, SO, TR,

o0 (] HITRRS, WP, S TR, eERe IR s, O, T

go] ST, SO, HREIRA, bR, R,

;2 : BRI, BIRIE, FREAE, RS, WK, IIREE,

0 g BRIRERT AR, YIRS, FRRIRSE, MBS, AT, AT,

40 DB, B, AR e

30 st

20 Bandung Institute of Technology . Institut Teknologi Telkom .

12 Telecommunication College Bandung . Telkom University (o > K3
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 7)‘ Univ. of Science, Ho Chil\&inhcity‘ Hanoi Univ. of Science (,{ r-

2.), Chosun A% (#[E). Univ. of Valladolod (234), Univ. of
Kaiserslautern (4 *), NTI (=7 }), McMaster K (IF%), FElE

ChECOREHRE

K (PED

B 003 (E T~ PO RS o i B 20174 T ARREEIEGAUE S 257 A
B 20184: [==2—FLxy T—7
W 20044F : TH@s 75 AES] SubByte ZEHARIRK | . o ers oL
W 2005 4F: [FOZ LR L s—) ‘(/\‘{77 1:1\/\/7»—:/5(}/3]
B o2006%F T2 SoTR R LT a—) 09I R (TR)
B 20074 oA kT) TS W 2020 4F : f%%ni“i\#::—ﬁlvﬁ’\ v hT7—2 (C\W) |
B 2008 (RSAREES e 5] W 20214 [k
W 2022 4F : Deep Q-Network
: iﬁi; :iii;ifﬁgzz? W03 RARORIL R
W 2024 4E : lAutoencoder |
B 20114 ey
B 20124 [16/64/128-point Flexible FFT) m 2025 4E : [Variational Autoencoder |
W 20134 [SW- HWigaiaRata Ve) A RBRET AT A
W 20144 TSW - HW ialiaxit 2 e A ABRED AT 4
W 20154 [IE5&eAmIE

i %
SR T
I

R—=b—

==Y

The 28 th LSI Design Contest in Okinawa 2025

[45 28 [A LSI 7H A > =7 Z | in M@ 2025)
TUNTZERFRFRE BT 15 - 5 TR 445 8d% B
LSI 7% A a7 A NHATEES, mERFHERT AT M55t v 2 —
http://www.lsi-contest.com/
BRERKSE TR, FUN T 2ERA R T
TN AFESEHTH (IR -EAESEER) |
XH 77— A S, ETERBETFRAYT— MM U T4 AT 4 T VAT MR,
CQ Hiftt,
JUMNTBSERBTIBARE R T, IFTBCERE) PR K74
JUN TZERFAE T - 186 TR E
LSI 7% A v a T A NETERESEER
202543 H7H (&) 13:00~18:00
e —
T907-0022 MHBIFAETFR)I 100 el 3
FERARRE L W AR OT U Z)VERERIKERGT DO a7 A R TH Y | fHEERE
FHEIESEREE I O E & & HIZEBSIIAMT 2 2 & THEDO T 2B 2 I8
HZEEHME LTV,
ENKT: - KB, mEFE, 707 iR
100 4 (AR
BRTF: « BEA~D/R T Ly FkfE, LSI B ESE~D Y Y —2
http://www.LSI-contest.com/

FNEER JUNTZERY: B W

FEREE

BRERRS: A HUA

FHRORT: RH B2
KRR Rk ZFHE
TR =K B
SO Ok R

JUNTEERT:

BB

By E4T
HH =ik

7 4 AR I K5 Wahyul Syafei Amien
N RUTHRERE: Trio Adiono
JUNTERZERE VB R AR

TPERTSCERE I BRI R AR

e - IEAGFAR

R

(WA« NEANFD)

£ T : T820-8502 f& M AR 1) 74 680-4 JUM T 3 RFIFBHE W T FHFZelels « 182 TR

T Ah o 0948-29-7667

Email: support@LSI-contest.com

LSI WA v arrzx NETEEAERER
FHAE B 1

The 28 th LSI Design Contest in Okinawa 2025

[%8t57—=<] \Variational Autoencoder

F28EIDT —~%, ALOHITH BFESFOMEEIRER SIOSH SN TWA A — b a—4—T7,
Aalix TVariational Autoencoder] %7 —< & LT, AUELOEEL, [FEEEHEOH A Bfs Lo — Ko
TR ZITH) 2 AL LET, Level IOFRETIL, 3X3DOX ZH|ET AR EZeREF LET, Level2
OFETIL, WHERZHEC LI EEOmERIZxd b Variational Autoencoder DRI ZFREH L £9°, Level3
OFFETIIREOE XX CHB E L, LY 2=—77pAutoencoder ZfEH L7V AT L& ikit LET,

RSN QO Ba%EHE, HDL (VHDL® U < (3 VerilogHDL) (2 X 2%t & GaER A nkds L OWRER R ©
T

EHETFILT) X LERE

B Variational Autoencoder OFZE

Variational Autoencoder (ZRICZEHET D L D ey a—F—LE0a 79T a—X— L TR ST
WET,

Bl LT, 3X3 DHE{&IZIIT 5 Variational Autoencoder OFERLX 277~ L %97,

Kyntech o) 8 A A 351 4 Kyutech - | 8 A A4 351 4
R, EP% (O, 1000EFHE) hian, "EO (x DRE. 10000EFEE)

B:l 1 0.9999 B:l 1 0.9992
R0 1 0.9977 &0 0 0.0040
‘ 1 1.0000 1 0.9987
h 1 0.9982 0 0.0034
0 0.0023 |E E 1 0.9963 |E
1 0.9975 0 0.0043
1 1.0000 1 0.9993
1 0.9983 0 0.0032
1 09999 |_| 1 09990 |_|

W SR

Synopsys® Synplify Pro® /Premier

Synopsys® Design Compiler®

Mathworks® MATLAB® /Simulink®

Xilinx Vivado® Design Suite

F 7 IRREEREEIZS U C, Synplify Pro/Premier or % OfiaEE4 A% —/1. RTLhand coding(VHDL or
Verilog-HDL) 72 E OFE BRSNS HILE T,

The 28 th LSI Design Contest in Okinawa 2025

RRE

« 1. Level l:fLLN& AT

3 X 3DOXEHEE X
N R THADT T R TA
s I alb—v g HO verilog- DL 7 7 AL

N RU=TBEOT T T A L OfEE (T 1y 7 OFHE)

« 2. Level2: k& mIT

FHEHEC L UEREOEE (RA, 71— 7—)L)
=R =THEOT U NI A
eI al—yal Mo verilog-HDL 77 AL

s N—RU=TEEFDOT Y b T A Dt E (71 7 OFFEH)

« 3. Level3: Bfk& AT

unlimited (VAE 72 & HEGH= LET)
cN— R TREOT T NI A
eI al—ya MO verilog-HDL 7 7 AL

=R TEEHDOT U N T A L OfE (T > 7 D)

The 28 th LSI Design Contest in Okinawa 2025

E& : JUDGE

B SEAEAN—IZEDUTD4HES 10 A THFAZ FER (10 point each)
1) THTI v I, Biar 7 A7 7897285 (Academic, New Idea)

2) FEHRRE. FEXEEISHPZB A (Used in real life, Good for industry)

3) FPGA D FEE L~ LDl A (Good prototype by FPGA etc.)

4) 717 — a0 (Good presentation)

=& - AWARD
B B (BEHREETS SIS H) SISAWARD
(T HF v 7y, Brar 7 A 7 E 4] © BEST

B Zofti, 2), 3), DOHSANLLLELZBRELE T,

The 28 th LSI Design Contest in Okinawa 2025
7:7,/%‘ ig [N VJ i e J ~—
FEIMEIERYPES AT A
Fo BB XYY BXF %
SR PN I ANEH
Handwritten answer accuracy judgment system

Miyagi Hiroto, Nishimura Taisei, Shinzato Yunosuke, Hosono Takumi
Department of Production Electronics and Information Systems Technology, Okinawa Polytechnic College
2994-2 Ikehara Okinawacity Okinawa, 904-2141, Japan
Email address: j2421319@okinawa-pc.ac.jp j2421316@okinawa-pc.ac.jp

j2421308@okinawa-pc.ac.jp

1 IXC®HIZ

WEA, /NERRICEIT DB AR N RA 2 R & 7
STWD. 201w, FRIKEFENRD b 5HE
BRI EOMEICEBNT, ZENIRE—ANDE
O OfFE R L, FRRHEEITY ZENHLL
STWD., ZhICLY, RENAS THEEEZED D
ZEMTET, FHOEBICKEE X TN NRH
5.

£7-, Uiv b roREOMENCINE, FEX
T oA 2EPNFEDITIN, L0 FZED S
LEEERL, AT EEETIEELE N &N
HEA L7, PTXFEEATAIL, XFEeELEN
TROOLXTFERBT D20 ESE, & OB GHEE
EIMEIEL72DTHDH. %< D/NFERTIE, ~—7
U= P T FEXTOMEEIT> TN D.
L, PEEXMACEHRAOAMETE T, HA
WRERI 3005 E W) REN D 5.

NS OMBEE RS D72, K AT AT,
Variational Autoencoder (LLF,VAE) ZHW\W<C, I8
ENTEE CHROZFHEMELY B3I ERHET
HHMAERRRETS. ZOVAT ALY, BEIX
HDN—ZATHEEZH#ED D Z ENTE, HEITME
BIFFEIZE S RERZHI T2 Z E N A[RE & 72 .

2. VARTATIONAL AUTOENCORDER {Z-DV YT

R AT MIFEEX LFOFEBITVAE 2 vz,
VAE 1L, ARETLVO—FETHY, AT —2%
RRTTOBIEZERNCEM L, T 20 bdT — X %/
k3% A A5 5{bd#s (Autoencoder) D—EHXTH
5. VAEX, moo—FLtFa—Fhbiy, = o
— X TIO WG EIEELIIE & Lidte. £ D%, il
BRI FIEERWCTHERES M E LTET MET 5.
Z LT, 7 a—X CEBTEEEN OB E LR LT
T5(X1B). 2Tk, LT —Z DR
B, 77— % Ofiseie ELIIZ T 2 I AN ATRE

272 %.

Omim |/ \w[me

R

1. VAE D3 v hU— 27 Kk

j2421318@okinawa-pc.ac.jp

3. VAT LABLE

AEERLT D FH S B ERAEES AT L (LT
AT L) OB 2R

3.1 VAT AL EEIZDOWNT
H 5L Zybo 77-20 (LLF FPGA AR — K) EIZ VAE
R AED, TEX LTFTOREEFEH I 5.

1. RENXR—FKEORZXL 0 2 F+5E, PC
FIZNB ERoTWDE Y 7 b7 =T (Tera
Term) (27 V& L7REHEANHBEINS.

2. WEIFIKRUA PR—FE~—DEHEHL, F
EXCRIZEEIT).

3. Web 1 AT TRZ % BUAS J N ALBE 21T 9 .
ANNTENT-F—% % SD I — RITRTFET 5.

4. SD 17— R#% FPGA AR — FIZHiAT 5.

5. FPGAR— R EDRZ 1 Z#F4 5 &, VAE [H]
BCHMT —4holhoni-T—% T A b
FT—=ENEELNT-T — X &l L, IERRHE
2179

6. FER%E Tera Term (ZFE/RT 52 & T, FHEL,
fRE D EE TR E O W32 2 &2
Tx5%.

K AT LAORFBERREEZR 1 ITRT

3% 1. BAZSEREE

0S * Windows10
- MATLAB 2020b
e - Vivado 2020. 2
Y 7 b i linx Vitis 2020.2
* Tera Term
FFAffiR — F | - DIGILENT #:44 7YB0_77-20
o - MATLAB
= og . =Zh
= oA
“HFTA L E—F
e —7
z ofls “Web H A Z
-SDA1—F

The 28 th LSI Design Contest in Okinawa 2025

.2VvI=alb—varv

MATLAB ECHEE L7232 = L —3 3 2D\ T LL
TIRT. #HiiT—4% LT A NTF—Z OB A X
IZ, FPGA AR — RIZT — X &% L LIADBRIC TE 572
THEEY A X2/ LTI, vyIzlb—Tar
CTHERATAHEBEOY A X% MNIST OEEY A XD
28x28 A HHUEL L C, R4 I/ ELL LT ozt o
5, 6x6 DY A AN T N E RS T=T-

8, 6x6 T — X DOEGEY A XL LTz

3. 2.1 #HifiT — & DYERR

HHEMUH OB IDFEEXHKTE 6 37— 1E
K5 (X2) .

ETfEda)iee]

| | o

q LEEEETTLELT
ERALIR % d1234$5b 787

il

X 2. #fiT — X EROFEN

3.2.2 F A b F—Z DERL

BIZIE 19) OFEZSRTEANL, BBELEEA]T
5. 6X6 Ry ho¥ A X2FfE+T5 (®3) .

E{RDERG

q BRI
'
il

-

3. M9y oF A NTF—4

3.2.3 BT —Z LT X T —F 2B L CTHB
45

ANENT=T A T —% (K 4 i) & VTEUE & 72
LT — 2 & 3 8 Z— i 5 (M4 h ok 3
) CHIEFEICIT k EEEE A L.

EPHGT—F L Da—2r)y FERAFHREL, B
BED B BTV 3 DO T — & 2325, iz
SNTHETTF—2 D7 T AT~V ETEL, BbHET
T5HY TATVEHEMEET D, TV EZ O
BIRTETLE & ESE, TUVE AV CETHE
ZLTWa5.

HIBIHE B A 5 D X 9 12 MATLAB | mﬁﬁé
%7 T ATV LI, BT — X O\ 0~9 [T =T
L (0~9) ThD.

5T — 4 FabF—4
'y q L] ¥
X 4. e HET—%,H: T AT —X
9

5. IR R

4, EBR K OREE

05 9 D TEEZNENTEX L, EMIZHRIT
X DAL LTZ.

FRAEHIEE LTET, FEX T~ OHTEH5 1
KT OANT 5. Z0OT%2T A NT—H2 LT 5.

WIZ,3.2 FIE 3 TR UIZFETHET —4 &7 A
N7 — % %t LB 5.

B, HRFERTT A T —% LRI UEOBEE
X O Eefcﬁ%)i}%/ﬁ\ﬂi” X” L L7z, &% b5 [EAT
STFERNE 2 THDH. T2, £ 2 2FITE T4
K DORERZF 3 1TRT.

& 2. FNENOFTEZLTOHBIGE R

1515 2E1H 3EH 481§ 5EH
0o O 0 0 0
10 O 0 0 0
210 » O O b4
3O » O w4 O
4o 0 0 o o
5= » » w4 -
[C: C: C: b4 C:
alo * O B »
9| = b4 @] O @]
3. BT L OHGIREE
FHFEE| #F
100% 0,1,4
20% 6
60% 2,3,9
40% 8
20% T
0% 5

1frr1

X 6. 1 OHIBIHEE
(£ TAMT—% FH:HT—%)

The 28 th LSI Design Contest in Okinawa 2025

F3ITHDHPIEEN %D 5] FFEXKTE
FAIAFERD &, K8 DL HICHATT — &)b OFESR
X 3] & [5) m2FfElC/ro7z. ZOHT b
T 227 5 2F5~ULR [3] DT, FDFEE, 3]
AR Wt

HHFERIMEVER & LT WO FEHREZ DR L
722 LT, 3] & [5] ONF— RN IE#RICR >
-2 & SBIICHIT — 2 DORERLTFEETHFTOE
X HOBEN 2 ERHITHND.

Tramn 43 (Cass X

X 7. 4[EHD 5 WP R
(E:TAMT—% FH:#HmT—%)

5. "— R =722\ T

5x5 DEEFRETE & FF D HA RN 90% 22 T
BY,6x6 OBFIIRIETE RN EZ X272 5x5 D
BIBAERR 24T > TV, 70 7T ADOFELTHER
28” nan(not a number)” & 72V EEMENH I TE
Mot LY AZDT R RBIER/NRT A — X sk
ExiTo 2N mES AR -T2, T DT= 8, FPGA R —
R _ECo VAE 3245 & BRSO B BE 72 & DIERL
NTE oz,

6. BINTITo72y I 2 —3 3 2o T

6. 1 HIEHFEDNT A—FEE k72 E)

b L7z k OEERET D720, BT %2 1E L <
B CE7-EIEZMERL, kOEE3 & LZ. FOHA
LT, kOfEE 4L B EICRRET D &, B8
Z—MERE LRI D ATReE RS E <, 2 LR
EEHIRTIRETE RN ENHIT BN 5.

6.2 8FDEIVERY (247 EHr (+Dpr7e
L) DHIE
FEXITN 2HOEE, TNENOK % TE L < #%
BT DMENHD. 22T, 7Y SR EIT, 4
TVxl DR AT o 7.

JSSYTFAVYRDIER T

X 8. FDADHH

X 9. —®DOHDHR

6. 3 EHEF Iz D\ T
PLFOFINECHEBMI AT, T A T —X & L
7z.
OFEBEHKTERE L, g% 5.
QU7 V=Rl — VEWEIT .
W BT I BET 572012, fE(bLEL %
179.
@/ A ABREELIT).
OHEGNSHTORE) I 7T EHEOI, ik
BT H50ENRNH L0, HENERZITH.
©AT7v s WO NATREZRET L, EFRICTHE
LI BT s) R 0752179,
OHBRNEZZITW), R4 AR,
@it DT % logical BN D uint8 B AT 5.
OEfEY A X% 6x6 12V H A XF 5.
O —fEAL LB A 4T 9 .

6.4 MNIST OH 5T —F % BR T

FEEHTOHEEZED D20, BT —% O
RE—VHBMTHZ LT L.

& DHIT — 2L, mUA bAR— R Es2E
X, FTNEIRE L CHEGLF 21TV L Eifg 4 6F
L TR, ERRITER % 2 BT 0 "2 — 2 ENT
S5 DITEER D 5.

Z D7, BT AHEENT — X IZMNIST O FE X%
TG 24T L2l 2+ 5 2 L i
L7~ L2 L, Wi aLER#% o MNIST OFEE X HFE (K

The 28 th LSI Design Contest in Okinawa 2025

10) ZRTHD &, BFITITRARNT =201 E A

bND T EWTND.

O, BBAEE% OT— X & ANOH TR THET
muﬁﬁf%éijfo‘?'f &@%‘%L}EL %(Eﬂi'f i

LLaEmLz.

BT — 2 BN OPRIREE LR 4 O L O 7R
ElpoTo. F 3 LD L MBI Y 10090 50T 1%
(1] OIL, D7 oo TWADR, F b KL H B E
TH 57 1%E 72> TNB T2, BRI E LG < 72

ST LBEZDBND.

4] Figure 1

Dode |8 0E|KE

u;
£

Datz
[]
u

L
-

Dats

e

¥
r

P

i
E

-

@ﬁi

Label: 3

Data: 3. La

£
v

-

£
5

-k

£
3

.

¥
E

LT

¥
¥

b

¥
3

7 IMB ®EE RV BAD Y-MD FAIMTD HYEIW) ANTH)

¥
r

LY

¥
&
¥
¥

o

"
.-

¥
&
¥
E

f

1

1
&
fm
E

L

8. 2EEH

[1]

J, WH

MRS, TR EE, K th o TaiE

XA RS 72 B)

https://diamond.jp/articles/-/201900

L
= I T -2

X 10. MNIST 5 — & @ U H A X (6x6) Hj{&

F 4. BT — S BIN% ORI BIEE

HERR =
L& 1E R 2mEE 3EE AEE SEE 6ER 7EH Witz Les
0 0 0 5] 0 0 0 0 85.7 0
1 1 1 1 1 1 1 1 100.0] 1
2 4 2 1 2 7 2 2 57.1 2
3 3 3 3 1 3 3 3 85.7| 3
4 1 4 4 5 1 4 4 57.1 4
5 1 0 5] 5 6 6 5 714 5
6 1 6 6 6 0 1 6 57.1] 6
7 7 7 9 7 7 8 7 714 7
8 1 8 8 7 8 8 8 714 8
9 9 9 1 4 9 9 9 714 9
7.5¢®

BILE, FPGA D VAE 1L 3x3 N TXTHY, v I 21—

T a VTITo Tz 6x6 ORI A X295 X 9 1EEF
THDH. AEOLFR— FTIZEROEEIZ L Y, FPGA
A— R EOEE OEBRIIMIZE DR > T2),
KHEREZA MATLAB TV I 2 L—3 a v L, BhEMESR
TAHZELIITET.

5%, TRTOMEEZHRAE LIz ET, FIFAEN
KO AT L EFENRCT DL TREML T
WSEZTHD.

LSI 27 A MIMITTv AT AR EZB U T,
Variational Autoencoder (VAE) {22\ T LV ELS H
BT B LN TE.

LD HFEEE LT MATLAB Tl T o] RI kS BE o 2
B\ DT DHEFIESRHANT — % OEE /7 85T
9. FPGA TIZ, VAE RIS OMERE1TH TETH D.

FHE DG

https://diamond.jp/articles/-/201900

The 28 th LSI Design Contest in Okinawa 2025

HW/SW Co-Design of a Variational Autoencoder
for Generating Hand Gesture Images

Team Machine Gun K

1%t Keigo FUKUDA
Grad. School of Computer Science
and Systems Eng.
Kyushu Institute of Technology
lizuka, Japan
fukuda.keigo193 @mail kyutech.jp

Abstract—In recent years, generative models utilizing AI have
been actively applied in fields such as video generation, natural
language processing, and image transformation, with various po-
tential applications being explored. The Variational Autoencoder
(VAE) model designed in this study is known as a powerful
method for image generation and image transformation. The
probabilistic generative process of VAE differs from simple data
compression, providing robustness that allows it to adapt to di-
verse datasets. Additionally, compared to conventional generative
methods, it enables more flexible representation.

The theme of this study, HW/SW co-design, is a method used
when implementing software functions in hardware. Hardware
implementation is particularly effective when embedding systems
into home appliances and automobiles, as it enables computa-
tional optimization, leading to reductions in processing time and
circuit delay.

In this study, we designed a system using a VAE model that
takes binary image data of rock-paper-scissors hand gestures
as input and generates the corresponding hand images. The
activation functions ReLU and Sigmoid were employed to prevent
gradient vanishing, reduce computational cost, and stabilize
binary image generation. The Adam optimization algorithm was
used to ensure stable parameter optimization. Furthermore, the
system was implemented based on HW/SW co-design, and it
was confirmed that both software and hardware operations
performed as expected.

I. INTRODUCTION

In recent years, generative Al technology has rapidly ad-
vanced, leading to innovative applications across various fields.
In particular, generative models have been actively utilized
in video generation and natural language processing. In the
domain of video generation, deepfake technology, which has
been recognized as a social issue, employs generative Al
techniques [1]. In natural language processing, chatbots and
OpenAl's ChatGPT leverage generative Al technology. Ad-
ditionally, in manufacturing, image transformation techniques
using generative Al have been applied to defect detection [2].

Generative Al is an algorithm that generates new data from
input data. Among these methods, the Variational Autoencoder
(VAE) is widely used as a powerful approach for learning
probabilistic generative processes. The probabilistic nature of

2" Mikito KAWANO
Kyushu Institute of Technology
lizuka, Japan
kawano.mi@dsp.cse.kyutech.ac.jp

10

3 Yuta HASHIMOTO
Kyushu Institute of Technology
lizuka, Japan
hashimoto.yu@dsp.cse.kyutech.ac.jp

VAE ensures output diversity and enables adaptation to various
data patterns. These characteristics allow VAE to achieve
a higher level of expressiveness compared to conventional
generative methods, making it suitable for a wide range of
tasks.

Furthermore, many software-based Al systems, including
generative Al, often face challenges in optimizing response
speed and processing efficiency when compared to hardware
implementations. For example, in automotive object recogni-
tion Al, real-time processing is crucial for accident prevention.
In such cases, hardware implementation enables parallel pro-
cessing for faster computation and circuit design optimization
for reduced processing time and latency, thereby achieving
high real-time performance.

In this study, we conduct an HW/SW co-design of a VAE
model that takes binary image data of rock-paper-scissors hand
gestures of size 32 x 32 as input. The system architecture is
expanded to 784-680-180-40-180-680-784, incorporating the
ReLU activation function to prevent gradient vanishing and
reduce computational costs, as well as the Sigmoid activation
function for binary image generation. Additionally, the Adam
optimization algorithm is employed along with He initializa-
tion and mini-batch learning, ensuring stable training even for
complex human hand data.

II. NEURAL NETWORKS

A neural network is a type of machine learning model
that processes input data through signal transmission and
computes an output signal. The model evaluates predictions
using the training data or its labels and updates parameters
such as weights based on these evaluations. This iterative
process, known as learning, allows the model to approximate
predictions that match the training data.

In this study, deep learning is defined as unsupervised learn-
ing using deep neural networks. Hereafter, all neural networks
described in this paper refer to those applying unsupervised
learning.

The 28 th LSI Design Contest in Okinawa 2025

A. Learning Algorithm of Neural Networks

The learning algorithm based on backpropagation is de-
scribed using Fig.?? as an example.

The input layer receives the training data x(= ag). The
weighted sum h; at the ¢-th unit of the hidden layer is
expressed by Eq.(1).

) + b1 (7) (D

’Ljao

IIMw

The unit output a; of the hidden layer is given by Eq.(2).

ay(i) = fi(hi(7)) 2

The output layer processes the hidden layer’s outputs simi-
larly and produces the prediction y.

YWl ki) O
=1
y(i) = fa(h2(i)))

The error between the predicted value y and the correspond-
ing training data ¢ is used to update the weights W and biases
b through backpropagation. Since the neural network in this
study assumes unsupervised learning, the training data ¢ is
identical to the input data . The loss function £ is defined
by Eq.(5).

®)

Next, to minimize the loss £, the weights W and biases b
of each unit are updated. The gradients of the loss function
with respect to the parameters are computed by differentiation.
The unit error d- at the output layer is given by Eq.(6).

oL c .
oha) ~ oy

Based on the unit error d,, the weight gradient AW 5 and
bias gradient Ab, for the output layer are computed as follows:

0a(i) = (4)) (6)

or 0L Ohy(i)
AW (i, j) = OW(i,j) Oha(i) OW (i, J)
= 52(1')% 7
L 9L AL dha(i)
Aby(i) = Oby(i) Oha(i) Obs(i)
= 02(1)(ZZQZ(()) ®

Based on the unit error J,, the weight gradient AWy and
bias gradient Ab, for the output layer are computed as follows:

11

AW (i, j) = b2(i) 83722((;)]) ©)
Aby(i) = 65(4) ZZ;(Z)) (10)

Similarly, the unit error §; of the hidden layer, the weight
gradient AW, and the bias gradient Ab; are computed as
follows:

252 YW (4, i) f(ha (i) (11)
AW, (i,5) = 51(@')(% (12)
Aby (i) = 1 (i)?‘3’;11((2)) (13)

The parameters are updated based on their gradients to
minimize the loss function L. Since minimizing the loss
requires moving in the opposite direction of the gradient, the
update equations for each parameter are expressed as follows:

Wa(i,g) < Wa(i, j) = nAWs(i, j) (14)
by (i) « ba(i) — nAbs(i) (15)
Wi(i, j) < Wi, j) — nAW1(i, j) (16)
by (i) « by (i) — nAby (i) an

This process is repeated iteratively to train the network.

B. ReLU Function

The ReLU (Rectified Linear Unit) function is widely used as
an activation function in the hidden layers of neural networks.
It outputs the input value itself if it is greater than or equal to
zero; otherwise, it outputs zero. The ReLU function is defined
in Eq.(18), and its derivative is given in Eq.(19).

z if x>0,
f(ar)—max(&x)—{o N, (18)
, 1 ifta>o0,
f(x)_{o if 2 < 0. (19)

The 28 th LSI Design Contest in Okinawa 2025

C. Sigmoid Function

The Sigmoid function is commonly used as an activation
function in the output layer of neural networks. The Sigmoid
function maps the input into the range of (0,1). It is defined
in Eq.(20), and its derivative is given in Eq.(21).

1

f@) = 1+ exp(—x)

(20)

exp (—)
(14 exp (—x))°

D. Weight Initialization

fiz) = = fl@) (1= f(z)) @D

In this study, He Initialization [5] is used for weight initial-
ization. He initialization is a technique suitable for stabilizing
the convergence of loss in neural networks utilizing the ReLU
activation function. The weight initialization for the connection
between layer [— 1 and layer [is given by Eq.(22).

)

Mini-batch learning is a training method where N training
data samples are randomly shuffled and divided into m groups
of B data points (mini-batches). Each training iteration pro-
cesses one mini-batch, and the parameters are updated based
on the mini-batch error £,,. After all mini-batches have been
processed once, the training data is reshuffled, and learning
continues in the same manner.

The advantage of mini-batch learning is that it enables stable
learning while reducing computational costs, as the entire
dataset is not used in a single iteration. Additionally, since
each mini-batch contains data with different characteristics,
the risk of getting stuck in local optima is reduced.

2

0, — 22
U, (22)

W(i, j) NN(

E. Mini-Batch Learning

F. Adam Optimization

Adam (Adaptive Moment Estimation) [6] is an optimization
algorithm that combines the properties of Momentum and
RMSProp. Adam updates parameters using the first moment m
and the second moment v. Given the parameter to be updated
0 and its gradient with respect to the loss £, denoted as A#,
the update equations for the first and second moments at step
t are given by:

my = Bimg—1 + (1 — 1) A6, (23)

v = Bovr_1 + (1 — B2) A0, 24)

where (1,82 € [0,1) are decay coefficients used for
smoothing the moments. The second moment’s second term
is defined as A%0 = Af - Af.

The first and second moments are bias-corrected using:

— mt
1-pt

my

(25)

12

Train Data

paper rock rock rock rock rock
¥ » 2 » 4 4
ECISE0rs ECISE0rs ECISE0rs rock ECISE0rs rock

W | e A\ 8
paper paper rock paper ECISE0rs ECISE0rs
4 ¥ @ ¥ w»
paper rock rock rock rock ECISE0rs
4 [] | Y ¥
paper rock paper paper ECISE0rs paper
W s ¥ ¥ & ¥

SCISS0ME

|

SCissOrs

A

paper

|

paper

¥

Fig. 1. Training Data

Ut

3 = — 26
(% 1— /Bé ()
Finally, the parameter update rule for 6 is given by:
T
Oy =01 ———— 27
t t—1 =1 Vo + ¢ (27)

where € is a small constant (typically 10~%) to prevent
division by zero.

III. PROPOSED MODEL OVERVIEW

This section describes the dataset used in this study, as well
as the learning and testing models. The learning model in this
study is implemented using MATLAB 2024b.

A. Dataset

The dataset used in this model consists of images of hands
from nine participants, where each participant captured five
instances of rock, paper, and scissors gestures. Each image is
sized at 32 x 32 [px].

1) Data Preprocessing: To enhance the dataset while main-
taining the image size, transformations such as scaling and
rotation are applied. This process includes padding after
downscaling and cropping after upscaling, ensuring that the
final image size remains 32 x 32 [px].

A total of 8192 images are used for training after prepro-
cessing. Fig.1 presents a sample of the training data.

B. Learning Model

The structure of the VAE model designed in this study for
generating rock-paper-scissors hand images is shown in Fig.2.
The layers are numbered starting from the input layer as layer
0, and the number of units in each layer is set as follows:
Layer O (Input Layer): 784 units
Layer 1: 680 units
Layer 2: 180 units
Layer 3: 40 units
Layer 4: 40 units

The 28 th LSI Design Contest in Okinawa 2025

Input

l Encoder

|

Fully Connect

Fully Connect]
1

[RelU func.] { ReLU func. }
v
[Fully Connect] { Fully Connect }
2 6
[RelU func.] [RelU func. }
v
[Fully Connec] { Fully Connect }
3 7
[Mean I] { Sigmoid func. }
- l Latent l
[] Output }

4

Sampling
LDSb A

Fig. 2. Model Overview

o Layer 5: 180 units
o Layer 6: 680 units
e Layer 7 (Output Layer): 784 units

He initialization is used for weight initialization, and Adam
is employed for parameter updates. Additionally, the input data
is transformed from the range [0,1] to [—1,1] for centering
around zero.

The model is trained with 8192 images (2'3) over 3000
iterations. Since mini-batch learning is used, each training step
processes a batch of 64 images (2°).

1) Overview of Variational Autoencoder (VAE): First, the
fundamental concept of an Autoencoder (AE) is discussed.

An Autoencoder (AE) is a generative algorithm that per-
forms dimensionality reduction to reconstruct input data. The
structure of AE is shown in Fig.3. AE consists of a bottleneck
structure where an encoder transforms input data x into lower-
dimensional latent variables z, and a decoder reconstructs z
back into an output prediction y of the same dimension as x.

A Variational Autoencoder (VAE) is a generative algorithm
similar to AE, incorporating an encoder and decoder. Fig.4
presents the VAE structure. The key difference from AE is that
VAE assumes the following conditions for latent variables:

o The latent variables z follow a probability distribution.
o The input data o follows a conditional probability distri-
bution.

To ensure the latent variables follow a probability distribu-
tion, VAE includes a mean layer and a variance layer. Since
variance o2 is constrained to non-negative real numbers R>,
this study applies log variance log o2 to extend its domain to
all real numbers R.

2) Loss Function: The loss function £ of VAE is obtained
as the sum of the following two terms:

e Reconstruction Loss F,.. : Measures the deviation
between the predicted output y and the training data t.

13

Input Latent Output
x * Encoder * z » * Yy
Fig. 3. AES Overview
Input Latent Qutput

* K | Sampling
Encoder >z~ N(p, o)
»10gn:r2

Fig. 4. Overview of VAE with Sampling

o Regularization Term E,., : Measures the divergence of
the latent variable z.

L= Erec(y7 t) + E’r‘eg(uﬂ U) (28)

The first term in Eq.(28), the reconstruction loss E,.., is
expressed as Eq.(30). Here, Up represents the number of units
in the predicted output y.

Uo
= (t(i) log y(i) + (1 — (i) log(1 — y(i)))

i=1 (29)

The reconstruction loss E,... is defined using Binary Cross

Entropy (BCE), as shown in Eq.(30). This is appropriate since

the training data ¢ consists of binary values, and the predicted
output y is in the range R g 1).

Erec(y7 t) =

Uo
=D (i) log y(i) + (1 — ¢(i)) log(1 — y()))

= (30)

The regularization term FE,., is defined using Kullback-

Leibler divergence (KL divergence), as shown in Eq.(31).
Here, Uy, represents the number of latent variable units.

Erec(yv t) =

Ur
Erey(p,0) = —5 > (1 +log (i) — w2(i) — 0°(i)

i=1

(€29)

The regularization term ensures that the latent variable

distribution approximates a standard normal distribution (mean

w(i) = 0, standard deviation o (i) = 1), achieving a minimum
value of zero under these conditions.

The 28 th LSI Design Contest in Okinawa 2025

Input Latent Output

}
@

€

Encoder z=pt+oe Decoder

Fig. 5. Overview of VAE using the Reparameterization Trick

Fig. 6. ZYBO ZYNQ-7020

3) Reparameterization Trick: Fig.4 includes a sampling
operation, which is non-differentiable and thus prevents learn-
ing via backpropagation. To enable differentiability, we apply
a technique known as the Reparameterization Trick. The
structure of a VAE incorporating this trick is shown in Fig.5.

By generating random noise € from a standard normal
distribution N(0, 1), we can approximate the latent variable z
as shown in Eq.(32). This enables differentiable sampling.

2(i) = (i) + o (D)< (i) (32)

IV. HW/SW Co0-DESIGN EXPERIMENTAL VALIDATION

This section describes the validation of the designed VAE
learning model and the obtained results.

A. Software Processing

To implement part of the system, MATLAB R2024b was
used to compute up to the third layer, and the results were
used as input data for the hardware implementation.

B. Hardware Implementation

The hardware implementation was conducted using MAT-
LAB R2022b Simulink, Vivado 2020.2, and Vitis. The ZYBO
ZYNQ-7020 (XC7Z020-1CLG400C) evaluation board was
used for hardware implementation. The board used is shown
in Fig.6.

14

AEY CPU

z(2)g@®
w®
b2

a®

@ or z(2)

GPIO

a2 AEELTEE
z@) VAEELTEIE

LT T

Fig. 7. Hardware Design [3]

processing_system?_0

cor + |- > DOR
FXEDI0 + ||} {D FIXED_IO
- usemp_o +|| dut_forwa_ip_0
e ZYNG™ wien o nepd
FELK_CLKO = (| AXI4_Lte
FCLK_RESETON IPCORE_CLK
L) —4d PCORE_RESETN
Z¥NQT Processing System ps7_0_axi_periph H—— 204 _tre acik
! b—a Axi4_Lie_ARESETH
L&+ spo_ax L
~ ret_ps?_0_S0M ACLK dut_forwa_p
e — o i Y
ot e “'E e U S s a0
o meirosclh penpheal_esetoo] | | g R et I . - &R0 +||—— bins_sbits
o mis_getug sys st inerconnect arsem0] @ X X LA = GPI02 +||—— sws_dbits
= dem Joched perpheal_ares ein0:0] @ e e me et | 11—
a 2 | MOI_ACLK
Tocessor System Resel MILARESETN
MO2_ACLK
MOZ_ARESETH
AXI Interconnect |l leds_ibits

Fig. 8. Block Diagram

1) Hardware Design: The blocks used for the hardware
implementation are shown in Fig.7. The block diagram is
presented in Fig.8, and the hardware resource utilization is
shown in Fig.9. These designs were created using MATLAB
Simulink and Vivado 2020.2. In this study, the 3rd, 4th, and 5th
layers of the model in Fig.2 were implemented in hardware.

2) Partitioned Implementation: The partitioned implemen-
tation method is illustrated in Algorithml using the number
of units on the encoder side as an example. The decoder side
can also be implemented using the same method.

3) Evaluation of the proposed method: The test dataset is
input into the model to verify its proper operation on the
board. The test dataset consists of 1000 images obtained by
capturing five images of hand gestures (rock, paper, scissors)
from individuals not included in the training dataset, followed
by data augmentation. The process from inputting the test data
to generating the output images is examined, and a comparison
between input and output images is performed.

The test dataset is shown in Fig.10, and the test results are
shown in Fig.11. From Fig.11, it is confirmed that the model
successfully learns the shape of hand gestures and generates
their approximate contours appropriately. Additionally, the
classification accuracy of rock-paper-scissors recognition in
this test was 0.980.

The 28 th LSI Design Contest in Okinawa 2025

Resource Utilization Available Utilization %

LUT 2014 53200 379
LUTRAM 62 17400 0.36
FF 2351 106400 221
DsP 32 220 14.55
10 12 125 9.60
BUFG 1 az 313

Fig. 9. Hardware Resource Utilization

Algorithm 1 Partitioned Implementation: Encoder Section
Model unit count: M; = 180, Mo = 40, partitioned unit
count: Ny =9, Np =2
(I: Input Layer, O: Output Layer)
Encoder Input: X € RN/, Weights w € RMNoxNi | Bias
b€ RNo
Encoder Output: Pre-activation Z € RNo | Post-activation
Y € RNo
Require: x ¢ RM:
Require: W ¢ RMoxMr p ¢ RMo
Ensure: y ¢ RMo

1: for i < 1 to My /Ny do

20 Kb o Ny(i— 1)+ 1

3 K™ ¢« Ngi

4 b {b(R) "

5. for j « 1to M;/N; do

6 LN Ny(G—1)+1

7: L™« Npj

8 X {2} e

9: w <+ {W(k,l) i,(:kbé/gm_’l:Lbegin

10: Z,Y < Encoder(X,w,b) (Perform Encoder compu-
tation)

11: b Z

12: end for

130 Y e < Y

14: end for

V. CONCLUSION

In this study, we conducted HW/SW co-design for a system
that generates images of rock-paper-scissors hand gestures.
Specifically, we introduced the Adam optimization algorithm,
He initialization, and mini-batch learning into the VAE model
to ensure stable training. Additionally, ReLU was applied
to the hidden layer activation function to prevent gradient
vanishing and reduce computational cost, while Sigmoid was
employed in the output layer activation function to optimize
loss calculation for binary data output.

The designed system was validated to evaluate whether it
achieves sufficient performance as a generative Al and whether
it functions correctly on hardware. A comparison of input
and output images confirmed that the system successfully
generated corresponding hand shapes, achieving a remarkably
high classification accuracy of 0.980. This result indicates that
the system operates as intended on hardware and that HW/SW

15

=E

H H H
: z 4 g H £

rock
paper
rock
rock

3

E* =a=

I L 3
§ g £

3

=5 ﬂan

Fig. 11. Generated Images (After Training)

co-design was effectively implemented.

Future work includes extending HW/SW co-design to the
entire system. In this study, HW/SW co-design was imple-
mented only for the 3rd, 4th, and 5th layers. To integrate
the entire system, it will be necessary to employ partitioned
implementation and variable file storage methods. Addition-
ally, further improvements in generation accuracy may require
employing more powerful feature extraction methods such as
convolutional neural networks (CNNs).

REFERENCES

[11 Y. Kashiwamura, “Deep Fake Threat - Shocking images created by
the latest AI,” Dai-ichi Life Research Institute, Inc. Available: https:
/Iwww.dlri.co.jp/pdf/1d/2018/wt1810b.pdf, Accessed: Feb. 13, 2025.
Miyagi Prefecture, Japan, “Image processing technology using
Al to reduce manpower for visual inspections at manufacturing
sites,” Available: https://www.pref.miyagi.jp/documents/22979/788626.
pdf, Accessed: Feb. 13, 2025.

R. Moriyama, “A Study on Variational Autoencoders with HW/SW
Co-Design,” (in Japanese), Kyushu Institute of Technology, Graduation
Thesis, Feb. 2023.

R. Okuyama, “Reduction of computational complexity of tumor detec-
tion using FCN and its implementation,” (in Japanese), Kyushu Institute
of Technology, Graduation Thesis, Feb. 2023.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,”
arXiv:1502.01852v11, Feb. 6, 2015.

D. P. Kingma and J. Lei Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980v9, Jan. 30, 2017.

[2]

[3]

[4]

[5]

[6]

The 28 th LSI Design Contest in Okinawa 2025
RS L < &2 — v O HEFHINT S X 5 A
—VAE ic X 3 ERE <% — VRN OIS —

1t Shintani Yuhi 2nd

Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
Fukuoka, Japan
2317117@kyushu-pc.ac.jp

. IL®IC

By (oA > —) 1%, M BEESCREE M
i U CEEREDNHEAT L, OHEITEASWIZE A D478
=R EIIK G T DR A2 F 5, OB
DHEATIE, TRED A F A T = 7 ZRLYEHI T 528
ZRIETHREMEN S Y, F O E BRI & R
HNARRRTH D,

AKFTeClE, A > Y — I VOEEEREES LED IZ L T
ERMNC AL L, i HE N BB ATEE 7R o A
T LAERET D, RUAT LXK, BHITERED R
WY 722 BYRIROFRIE 2 $24E L, EEgREEOR 5%
oY 2 7R, SHII3ER 7 r—~ 2 ADM
WCHGTHZ L R2AME LTWD, £, AREg T
SEMANT O AR FR R IS FEETH D,

ARWFFE DO HEEIL, Variational Autoencoder
(LLF, VAE) Z W= A v v — VEEFERIRHE 0 B B
VAT LD THDH, KRVATATIE, A/ —)b
OEgE AT E UTHERL, BEREREEAZ M L CRY
WAL A RFET Do VAE I RBMGRF R 2 TR 22 I A
LR 2 B35, Z OFREBGRREICIV T,
FEETEH IR BEFE N & — RO B E AL I A BB & A
T OFE S LCTHET A2, T OZEGHATIC
X0 BE KA ERT 5,

R AT BMZX Y, BITENEDFEM 725347 23 Al g
720, EHEOEBREESE T VA ZOEHTHS
DI BT, AR—YRPESWICBT 2 iEE) X7 +
— > AR LR EM AT O E EMFHIIC b 5 FEE
Th b,

. B

A X TABFEE

B 1IZ/RLTIZH DN, A2 —VOEFEEA % AR
b3 238 ThH 5, AREEIL, 20 LED HFEEIN,
FEFERE |25 U CoaRth (B EEEERE), f8fa (FPEEEERE), fk
& (BREEEEFE) O 3 S CRIEAE R T 5,

16

Miyaoka Yoshihiro
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
Fukuoka, Japan
2317136@kyushu-pc.ac.jp

B 1. RS S

R AT AOFHRIE, 85 LED fil4 cixa <, M
BIRIT I 5 < SEIRBIEEFE D T AL THE A BRA LTV
LD, BRI, X 212077 10 BT o fiRs]
FROREI) L, EBICAE B H D A RTHEZR ZYBO $2
felmlis &2 I LT D,

AIEE OEEFEMRAT 7 L Y XTI, USB A AT MHh
DS L7z % VAE IC A& LTHEG L, SFRiCE
BEFEEHRDA) —TEDT 5 Z L TEEES
DX ED, TO%, BERM LU ICEAICRHE LT
LED O HIHME 5 % 4T 5,

The 28 th LSI Design Contest in Okinawa 2025

FPGA

USBH % Z
BRO Y A X% 64x64IZEE
BffE 7L —R 75—k
VAETEF L T 5 BT & 185

C o — L DEGE RS .
CECDBHTERELTWLIIRE

s W LILED®D A — Mot

-

EREREMETEE

- REBA L BAICERRE SIS
i L 7LED & 24T

¥ 3. v RA7 ARG

X 3ICAR AT DO ZTRT, K AT LD
— R = THERRIE, FPGAAR— R, B AZ LEREFENT-
A BIO26LED 7 LA bRk &S5, ZYBO A3
BEEAVBE 2024 U, g & (2 Ed & S 4u7= LED
HhA 2= 2 =2 % HETHN—Ry=T7rYy
7 aFEEL TS, Fhx BERK LT, FPGA O % [X]
417RT,

VAE OELEITH T v v 7

26 LED 25572007 vy 7

FPGA NSO T /3w 7 D SW,BIN DT &1 v 7
FPGA W DT /3w 7 D LED D7 1w 7

4. FPGA DRk

®OOO

72, AEON—FY =27 A4 AL EDETUTIOR
R

#1. "—Ryx=T7HhAX

Resource |Utilization |Available [Utilization %
LUT 4128 17600 23.45
LUTRAM 62 6000 1.03
FF 4344 35200 12.34
BRAM 2.5 60 4.17
DSP 72 80 90
10 24 100 24
BUFG 1 32 3.13

B. EIRAT

USB 4 A Z i BEUS Lz mifgix, aiflEEe LT/ 1
— 27— LB X OEBOY A REF R, i

17

X0, VAE COEBIBEOAM 2RI 5D LN T
b, £oT, FEHYRLETHELZR EIEEND,

X5 A4A>Y—LD7L—R7r— ik

C. LA F TS

BALEE S U7~ if81E FPGA AR — R L TR S N5
FPGA |Z B SN VAEIZ L o5 TA > YV — Vil E A
T—H & U CHaIAR, HihDA Y —)v & DS
5 LED {LFR % 473 5,

X 6 |Z LED 142 T P RAZT LA Zffio -1
T E S T

wﬁ—‘tu St ma
—
ok

(b) LED B4R FEAR
X 6. B4 Al

The 28 th LSI Design Contest in Okinawa 2025

D. »"—FrzT

VAE DA R—=s8F A —21F, X TSRS R 72
AR Ui, F 728 EEIE (20000 [, 8%
[0.0001] TH %,

J,”.. (77\5’
) IR)
i eier A
—@ —— o

IP 4: dut_forwa_ip_0
7. "—RFu=T1k

M, e

A EGEANE

AAFZETIE, USB A AT EE L-EgT — 4 %
64x64 7 L/UZY A AL, 7 L— Ry —LA5Hh
%, FPGAIZEHE SN VAEIZ Ko TA v Y — L DEERE
AR A T B FTA L7, SEAMAS SR 2 2 LED 7 LA
(2 Ko TEERERE P L O 2 a5,

VAE 73 X A D {biEfe Cid, MATLAB BRiE T
TLATFOFNEIC & 2 EBr A Ehi L7-,

O HEBT —% OB (J L — 2 r—)VE#E LT
A — VAR E)
@ ANTF—F ORI L e

4 8. OO FIPAFEE

©

R LRI IS FE-5 < 10 fEI (REHE, PR,
f8, B4R, /B, BHEEK, HEE, 2956 Ml
fx,) O~ A7 Rk, X8 &R

64X 64 7 /VOEET — X D 4096 KL
K L~ ZE
=a—FNVFRy NT—I T —%T 7 F p 5
S — Ay M XD VAE Ol

FRE RS O & B AR

BB 1T D < BE Bk o F i

@O

ULEDRAT v T 21T o7,

B. ZEheni R

gdd

-]
()N 7] (b)) 77

(9. 87 —%% VAEIZAS) LTS

9@ IZRTHEET—ty b FihA > — Lk
J OSSR ZE LNV =gy, B4 T
W) EFAWTVAE 23l L=, I ITHEET—F 0
HHERSE R 2 L, BREER OREZ PER L7 AR
IRIRTED FRERRICARI L TV D Z L DSHERR STz,

FENERE DR REZ M 10 12777, fRZAREITY
B OWATITHEO BRI U, MOS0 D0,
ITHNCZEIRRBIZIEL TWD, 72720, RENZRTH
T—4ty MZXHEFE O RMEIIBE T~ &8
Th 5,

12000

o
11000 "

X 320
w00 ||| ¥ 11189.2

\
\

\

8000 ‘ A\

5
£ 7000
&
6000 |
5000 ‘
X 9867

4000 ff T Y 350371
| —e|

9000

3000

2000
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Epoch

X 10. FEHEOT T 7

IR DT A b F—Z T 2 Fob s 5
R, PEREREIL 3 BERE (R, PR, R
k) TR L S AL, AJTER & FRAE RS [0 22 5 iR
BriC & v BEREREI S B I S Tz,

The 28 th LSI Design Contest in Okinawa 2025

ted Data (Adjusted Orientation)

structed, Adjusted Orientation) Anemalies Highlighted (Adjusted Orientation)

H H

. 11. /\

BRI b D EEFERTARE R A R T4
X0, BT B BERE
2oz,

X 12 |Xfi#
TR XD~ A 7 LBz
B — 2 D TEBMIRHE A A RE

X 12. 7%&1@%

C. feaF

X 13 [ZRTE YA v Y — % AW THEIEERE T
L7z, USB B A ZIZ L0 HUS LIZEREA Y — /LDl
BF—FE6AXCAE T ENMZY T AL XL, L —R>r
— VIR LT,

X 13. E¥ - B EZ i L= A Y —

VAE OFAERFFEICL Y, BRE A4 XB X ORHAD
AR S A, BEREREFT OB N A
L7,

(X 14 1% 85 (5T O 22 [0 A1 K O FE O 18 i R s
%%beb\éo

19

Input Data (Adjusted Orientatior wstructed Data (Adusted Orientation)

e (Input - Rec

istructed, Adjusted Orientation) Anomalies Highlighted (Adjusted Orientation)

X 14. FEWA Y —Z HT- B
RKEEIZEY, 42V — VOERIREL S E Ch
FNARE/R AT AR FEBLSI NIz, R, BRELZ IR
REL LTIADART 7 u—F1L, VT ILH A LEFEH
Wre AT HE L TOEAMEZTRERL TV,

[15 | AR A BRI B D BEFE AT A5 SR 4 BB R T
N 2wy BT U R AR,

15. RIEFRRT A A

IV. b b ic

ARFFETIL, VAEZEMER L Li-A v Y — VEERRIRRE
DO AT L BREL, TOFMELEEIE LT,
KR AT ME, HITEIRED Feii b o Bl O i S B
’ﬁﬁﬁéﬁﬁﬁ%T AR = B RO SR oy B

B BIGHAREM 2 RIB LT\ 5, 414 ORFFEHE
<,W%A& VERBET —T 4 7 77 NOi#R
%EWL,%&U%@%%VV—»«@@%%Mﬁﬁ

EIF 5D, ZHHOEMAFRED EARIC v
B A2 G PR OO i O EERER m/ZTA@%ﬁ#%ﬁé
ns,

X5, RYAT AORERIGAIZET T, SERE
WO T NS — B RO E T — X OEREN L
Thbd, £, WHRFEETT VOGN RIC X
0, ENZESE HBREE OE T DS A R &
HHENEETHD, T, 42—)VOEREIREE
TR DA AR OB & E BT L, T
IZHHAIATe Z & C, K VBEOREWBZEERBELN
HEBEZOND, Tz, ISERMOEMCY T4 A

The 28 th LSI Design Contest in Okinawa 2025

DR D FEBUCIANT To— R D = 7 Ofift b ik &
LTHETbID,

MZT, 1oTF Ty F 7+ —LEDOFHEAICEY, E
HAR 72 BEFEHEAT O IBERC TR 72 A T F o AHELE
AT A~OFRBELHHFIND, Xk, EEER
RAR=VNERR E OT — XN AREL 20, FIHE
OfEFERIEZ AFEMICE T 5 a v 27 ADOREEN
REHZAD, £, 77U RR—ADOT — X JLBL %
AT HZ LT, HISERM L)L TOBRET — % Ot
FEOMTRRIRE L 720, BT U A7 O TFRIET VRS
EREBOR ONLRIZHG T 5 RN H 5,

IBIL, RVAT LT 2T TTNT A A LEE
EHDHZET, LVEETHENCT V=P —of
B —7 2 —ADRMNAREL 2D, Zhic kY, B
AEIEOHF TORAMERE S, FIHE OITENE R R
FEE#HOM ELIREESN D, 20X 5 7281k - #5hE
W72 dEaE 28 U C, ATREFEEEIC ST 5 aiEn e Y
Va—ald LTORENRAEND,

P E BN
[1] ”“LSI Design Contest” LSI Design Contest Committee.

[Online]. Available: http://www. l1si—-contest. com/.
[Accessed: Feb. 25, 2025]

20

The 28 th LSI Design Contest in Okinawa 2025

BEEDOL AT U N EHRTHUAT A
F—4%: Taki
MR mSZEK RIaCHH
— Circuit Layout Checker System -

Teruya Hiromu, Takayasu Toui, Osiro Norihiro

Department of Production Electronics and Information Systems Technology, Okinawa Polytechnic

College
2994-2 lTkehara Okinawacity Okinawa,
Email address: j2421313@okinawa—pc. ac. jp

904-2141, Japan
j2421311@okinawa—pc. a c. jp

j2421304@okinawa—pc. ac. jp

Abstract— We developped a system to streamline the

verification of component placement on printed circuit boards
(PCBs). The system determines whether the component placement
is correct and visualizes any errors by using a Variational
Autoencoder (VAE). The Zyng-7 Z7-20 FPGA is used to process
the images by dividing them into smaller regions. The system
successfully detects errors and also reducing the reliance on visual
inspection by through MATLAB simulations and FPGA
implementation. This system is expected to be a valuable tool in
PCB design and manufacturing processes.

1. HE

BT A B MR DOFREE - BE TRICEB W T, SR
NEEEOEE REEEZ T, MO REAEZ &
TZERNDHD. ERENAE L TCWBIEE, DOy Ola]
BEARERE L 72 < 72 0, W EEROMERENMET 357217
T, BROBASEIZL 2 BEDORFERNRET LR
K& 725, FRCARREBRE D BH CHERT 254, @iho
ARRBIZKSHTITEENEALTLE Y ZENE V. F
7o, BARHERE CIEBO 2 Lol E X A & kU =
IS, TR AREMEEAHTERE 2D,

ZOX D MEERT D202, HihOH A ik
BITDVAT LAEEATDH I LT, SO RE TR
WCHRL, RARICAREGZECE L BICREETHRT
HTEIZTESD.

F T, BB EMR EOERS ONE DS IE LB E
THOINEHRL, MEVWHYERRTDEUAT L%
R+ 5 Z iz Lz,

2. Variational Autoencoder (Z-DVNT

VAE (Variational Autoencoder) I, AE (Autoencoder)
OPER T, =2 —F L%y NT—7 Zffio = ERTE
TNO—FTH 5. EIZHAEN7: LFE CEbh, 7—%
ERRRE I ML E TV 5.

VAE OFFEIE, AE &[RRI T — & & JEAE - fhi 95
HARAZ R B0 6, FRMZER] (BTEZER]) % iR

21

LTI ThD. = a—FIANF—%% [
B L It o7 iy B 7L, £IhbE
EEB RN T Y v 7T 5. 2k Y, B1E
T ERICDE D 0MMEFETE, LT —X2 DA%
RNFRE L 72 5.

Fa—21%, Yo7V S ENTEBEEENS TO
F—H T D, WEEMEISZEEERSADO LD
TRERIOAAICHE DY L odlEnD 2, T LOULA
PEDS BT 5. F£72, TOMRAIT LY 2 A REREFRE
i b ARETH 5.

ZORER, VAE X7 — % DETTIET TR, HiLng
— 2 A RSO E R BL O FRAT AN D,

3. BARERE

AEERET % Zyng-7 727-20 (LLF, FPGA) I, VAE %
FWTIE LB E O B & FRREE 5 2 g%, SD 71—
RIS R ZRET D, KA T LOBEELR 11
NI

#F 1. BAFEREE

[pC]

05 + Windows11

[Zynq—Z27-20]

« MATLAB 2020b

+ Vivado 2022. 2

« Vitis HLS 2020. 2

¥ Y 7 &

AR — K * DIGILENT #:#4 Zynq-27-20

(PC]
+ MATLAB
[zynq-7020]

=Zh
= A

o

aup
oH

The 28 th LSI Design Contest in Okinawa 2025

4. VAT LHE
ASEWERE T AREEDO LA T 7 B ERTH AT A
(UUTF, VAT b)) O3 & 7R~

41 VAT LOFERE LA A

VAE Z PV TR O IE LUWOVELE O Fifg & KiEEifg &
L, BiEWE S 2 BT Y 7R RTHH D LT
5. FEROHRTE DHFALILRT S 2 & T, FREK
FHORLE TR T DR ELE ORI E 2 W L X85 &
k%;$mmﬁ%ﬁﬁ\x%$%;%ﬁﬁétw®/
— b2, BEERICIKTET 2 Y A7 & KIS S
TIEMNTED.

A2V FNTATT

WA X% 10X10 & LTHEEZITY FPETH -
7. L2, FPGA TBARZEHHH T, Zyng~7 77~
10 ZFEHTFETH-7-23, 3X3 L0 &EGH 1 A0
KEL 72D EDSP B 100%EB LT LESTZ. F77,
Zyng=7 Z7-20 T, EffY A X8 5 X5 DK T DSP
OFEHFEN 0% %2, RESMEREOT VX2V
BEABZIT)W CHERFEENAELTND Z
VIR L7z,

D7D, 10X10 OEEZ 5X5 OERO 4 DD

T E LB 21T 95 Z LT LTz,
Graph | Table
LUT A 21%
UTRAM A 1%
FF 12%
BRAM 5%
DSP 91%,
10 10%
BUFGm 3%
T T T T
0 25 50 75 100

Utilization (%)

X 1. DSP { fi =&

43 > AT LNEVMEDTEN
VAT LAEROENEDTAUC OV TEHIT 5.

O MATLAB Z W CH A Z &EE L, THEiE (7
—64x64) & MEEEE (10X10) #ZFNENRE
T5. fRetk, WMAEHERZ 4 SDOFEEIZ o E L
TSD— RITBRGFET S,

@ VAE Z T, 25| L 7= 5x5 A XD IE LW EE
O & RAEE 2 e+ 5. BhEWES % A
EOPECHHATHIE G 4 Kz Bk L, SD 71—

WZERAET 5.

@ JLEfg & 4 DO E] U 72 E B & FAk

22

ELTRONLIEBREGKTD. ART D,
HEBHE O A BOES ORI G EABIZT 5.
ZOt%, EXEGEFRTTD.

VAT A EEROEEOTN E K 2 [TRT

MATLAB

| NASTRELER \

|

‘ REEEROERE L &t ‘

sph—F
l
ELVEEDESE
HIEERE

BEEVHSEQROTUTT
Eu Z{EL I EER TRT

1 sph—F

MATLAB

JTEIR & B HIEER
% B

!

‘ EREGERT ‘

2. AT LDt

5. FEBRKROBRGE

5.1 MATLAB

AT DOVERRIZ & 7= - T, PC T MATLAB % 7=
VAE OFEBAERY S 2 —a 2 ERLT.
T — 2 I3 IE LW ECE OEGR % 4 53 Lz
HONUOHETD. HiiT—% %X 3 (2R T

T {4 2

B3
j u
H BT — 2

The 28 th LSI Design Contest in Okinawa 2025

£, 7A T = LT, ELWERBOEROMIC Betklc, JEEIG L LRI R % G LR
FERIO B GO RFEEHR ZFIA L. 7 A b7 — HOBAGBTEF L. hick b, T Ei
2 % 4R XL EOEHMNEESTWENEDLNYLT L

7. IERHIEEM T ITRT

N B
;IIII
.
X 4. 7 A T — & FA D 33 i o> ML VIR TE TE LWELE IR TE

X 7. [EFE 4

VAE 21T 9 B%, #EiT—% &7 A v T —X OJF UAL
BOEHSEER LT, E£72, FEHEEZ0.003, =Ry 5.2 FPGA
7 ¥ % 10000 & L C{T-7-. VAE B OEE A 5 125 MATLAB G475 7= VAE 76 BV HIE Eife 1) £ <
DLz, FPGA ETHEfE L. ZD L&, HiiT—4
EF A NF—Z I MATLAB LRI & DA LT-.

MATLAB (2 X % VAE & [Alkk, #bliT —% &7 A T —
X ORI UMEOH Y ZEE LT, 2oL X, FEEE
0.003, TR 7$% 10000 & LC{T-7=. VAE %D
= = 5 8 1o

g
-

T * [ZF]
T LURREDIKE |Eﬂmaﬁ%ﬁﬁw&&

it

u&.
[

1] -

[X| 5. VAE 1% D [hj{4

BV ERS) 2 0 2 72 1T VAE # D ife & il 7
—ZDFELHG, HIEWES \%Eé 1E LWy 2R

@l L, “EHERGREER L. CoL X, il L= = |
F—SDEO+0.2 #BEE LTS, Zhicky, FLUEEORE I?f@”%%nﬂﬂ‘“
BEERSY & IE LS8 — B Thhnd & 52725, 8. VAE % o4

“Efe e A 6 (2R

[IEEV VS 43 21513 5 72 D1 VAE # O ife & il 7
— X DESD, EEWES %E@ IE LWy & B
Bl L, “fELHEBGE AR L. ZoL X, Hi
F—H DD +0.2 ZHEE LTV,

AR EE R A 9 1T

it
!
At I At

FLWEREDILEE D A EBAAE RS

|
B 6. ~ fifL I E R

23

The 28 th LSI Design Contest in Okinawa 2025

ELVEEOKE
9. —AEfLHIE 15‘2(%%1 +0. 2)

L2, BEX0. 2 7ZLMEWNEHDTHDHIZHHD
ST —EOENIE LW EHBI L T2, BfEz
T0.4ICEE L, FE b EmGE AR L. =

B E i 2 X 10 12T

[EE] B3
. J
= EI &F
ELuL> EEP@JKFE Bl A5 HELKE |

X 10. gfﬁﬂﬁﬁﬂ* £ (%ﬂfﬁio. 4)

X 10 THEX 9 K0 HIEMICHBITE T2 9,
ERERZTEER & ARk LEE WIS DA A TR L
72, ERHEEX 11 IR T.

i
Rimriaaen

'...‘

ELLRBEORE | EfloaBRAEORE

X 11. IE35[m/ %

24

5.3 MATLAB & FPGA O 5L bbb

Alal, WJFCEXE D 4 SDORIKIZSE L VAE 21T
57278, MATLAB TIZY 7 h 7 =7 DA THFHE, FPGA
T, Y7 b 2T =R TOWGFEIT> TN
% . MATLAB TIZREDALEDEWZHIE L TEY,
FPGA Tl 725085y DRIEWAHIE TE TV 27o),
VAE DREEIZENHTWAB Z ENGho iz, [EMERD
ERZEL L, BT sBRICEDENKEL Lol

», VAE#ZOMEBRKELS AL, MEIBHEICRENT
ENRHTZO T EEZD.

6. FHf

WD 4458, “fE{k, VAE TomgAER, —Et
HIE, HiEAK LRSS E~—27 35 5 0IR
Fi%, MATLAB & FPGA IZ X W EIETX TRV, Eily
EEITO ZENARERTZOOETSH. LvL, MRAFH
B R OEBIZOWTIE, REALE L EE
ThHY, HMEOWHS S DOEER, BIONE CHRE 21T
I EEFIZHIEN TERWENNH DDA LTS,
KIEH OF %2 3% 2 (2R

2. 7
A AT
AR DY & (717 A

Hif D 4 53

1k

VAE TOmE 4R (MATLAB, FPGA)

“hEAE

OO0 O]0O|O0O

Wi 2 Ak LEE WOy~ — 7

7. AT a—)

1 A iz EsRA AR & ARG EEZER L, 2 AFIC
BRZE ATV, 3 A FICREBERFZIT 5 TETH o123,
VAE OFEEICEMZE L CLE o7, £, EBICHEIE
RIS B L C VAE 2T LR, 7 — X \ERARE
LA—R_R—=Ta—NRA LA, ENEEEDICFE
IRCERMDOTZ. 2D, I 2l —a &R
BENURAELT=.

BENEWEIT 572012, WmigE55H L VAE 2430
FATTHZ L THEELKD D, EEHER: EOTE
%EEL,WM@@%%%T%@LTﬁOt Z D
HOFPGA [CEME LY AT ADFEAVE Y (2 EE i & H
NEFDHZENTE, BABATFVa—VERYRETZ
EWRTEE BHARBAF Y 22—V T 12 177,

The 28 th LSI Design Contest in Okinawa 2025

18 2R 38
2B | 388 | 4@ | @8 | 28 | 3@8 | 488 | @8 | 28

ER{EE ““"'f"’wm

FES 1T S i Al 100%

wEEHLEa— |0 77 2 1o0%

DEETPECEVYE < | I i i Bl Feevy -

BETAH il tert- Al

ks FLEa— | | | oo |

BATAF 009

BHRE ==
PE ==*
w2 —

12. AR R 72—
8. F&¥

MATLAB & FPGA “C 5 X5 @ 4 SDOFEIKIZ%FT 5 VAE D
FIEICRII L., I alb—a TR S F£L
W TW2h DD, ERRICHE R AIATe BRI, 2
RELET DL EBICHETZIRRBICOVTHR
FLARTNIERST, TOESITBNTEL ORITH
MAEBERDIVNERHY, L THRETHHTZ

LU, BB FPGA IZH A AT e Z E N TE 72720,
SRITHR TR AR I A RO L, K R&E R R OH
BINTEDLLICTV AT LAEZIEEL CWEZNWEEZ
T3,

9. BEEH

[VAE 13 B ERENCESLD 2 WILE AT ITAEEE L X Y
v b &Y R < fEEL
https://www. tryeting. jp/column/2382/

(F—hzra—F—]
https://jp. mathworks. com/discovery/autoencoder. h
tml

25

https://www.tryeting.jp/column/2382/
https://jp.mathworks.com/discovery/autoencoder.html
https://jp.mathworks.com/discovery/autoencoder.html

The 28 th LSI Design Contest in Okinawa 2025

Implementation of a VAE-Based Circuit for Image
Compression and Anomaly Detection
and Its Potential Use in Edge Computing

1% Yuki Imamura
Kyushu Institute of Technology
School of Computer Science and Systems Engineering
Department of Computer Science and Networks
Fukuoka, Japan
imamura.yuuki475 @mail kyutech.jp

Abstract—With the recent evolution of wireless communication
technology and the spread of 5G, there is a need to create
a new communication environment that takes advantage of
the characteristics of low latency and multiple simultaneous
connections. On the other hand, there is a potential problem due
to the increased burden of cloud processing. Edge computing
is attracting attention as a method to solve this problem. In
this study, we developed a system that compresses and analyzes
acquired images by implementing VAE using FPGA to realize
efficient data processing on an edge server. As a result, the
system was able to perform image compression and anomaly
detection. However, the system’s performance is expected to be
further improved by utilizing higher-accuracy FPGAs and by
incorporating color image processing.

Index Terms—VAE, FPGA, Edge Computing, Image Compres-
sion, Anomaly Detection

I. INTRODUCTION

In recent years, wireless communication technology has
improved dramatically, and 5G communications are becom-
ing increasingly popular. Unlike conventional communication
standards such as 4G, 5G has the three characteristics of
“high speed and large capacity,” “low latency,” and “multi-
ple simultaneous connections,” of which “low latency” and
“multiple simultaneous connections” are important axes for
building a new communication environment. Conventional 4G
communications have focused on smartphones and cell phones
used by people. However, 5G assumes that IoT devices such as
vehicles, drones, and sensors will be connected to the network
in large numbers.

In addition, cloud computing is the mainstream in the IT
industry today [4]. As shown in the left side of Fig.1, the cloud
performs the processing from the edge device and notifies
the edge device of the result. However, there is a limit to
the amount of data acquired from many devices that can be
processed only by the cloud, and the amount of traffic will
increase, making it difficult to enjoy the benefits of 5G.

To solve these problems, edge computing has been gaining
attention in recent years. Edge computing is a technology
that performs part of the processing that is conventionally

26

2" Taiga Kawasaki
Kyushu Institute of Technology
School of Computer Science and Systems Engineering
Department of Computer Science and Networks
Fukuoka, Japan
kawasaki.taiga711 @mail.kyutech.jp

Processing servers
installed close

()
to the base station

-
5G base station ‘

Processed in the cloud

Current methods ~ Future methods

Transmitting moving images
at high speed and
capacity using 5G.

[This time the system
creation part of the system
Olmage compression
(OAbnormality detection
(Olmage recognition

Data from on-board cameras etc...

A

Fig. 1: Image of edge computing and the part of the system created
this time

performed in the cloud, such as data processing at a base
station or server located near the user terminal (smartphone
or IoT device) [2] [3]. Using this technique, it is possible to
distribute the processing that is required in the cloud to edge
computing, reduce the amount of communication traffic, and
take advantage of the “low latency” that is one of the features
of 5G.

Therefore, we considered the use of VAE and FPGAs to
realize edge computing. A system for detecting foreign objects
on the road has already been created using VAE, and certain
results have been obtained [5]. Therefore, in this project, we
aimed to create a part of the process on the right side of Fig.1
by processing images acquired from an onboard camera using
an FPGA equipped with a VAE.

II. METHOD

The tools and their versions used in the creation of this
system are shown in Table I. ZYNQ-7010 with DIGILENT
SoC is used as the FPGA evaluation board.

A. System Structure
This VAE-equipped system has the following two functions.

1 image compression
The dimensional compression capability, one of the fea-
tures of VAE, is applied to images.

The 28 th LSI Design Contest in Okinawa 2025

TABLE I: Tools used in this development

[Usage
For VAE simulation
Hardware simulation
HDL Code Generation
FPGA Design Software
Hardware acceleration
Evaluation Board

[tools used]

MATLAB 2024b
MATLAB/Simulink 2022a
HDL Coder
Vivado 2022.1
Vitis 2022.1
DIGILENT ZYNQ-7010

2 Anomaly detection
Another feature of VAE, anomaly detection is performed
by comparing the original image and the generated image.

This section describes the overall concept. The images used
in this project are grayscaled for simplicity. The image is
divided into blocks like a JPEG, and VAE is used for each
block. The block size is set to 16 x 16. PSNR is used to
compare the original image with the compressed image for
each block. Image compression and anomaly detection are
processed using PSNR. For image compression, if the PSNR
is above a set threshold, the compressed latent space is used
as the compressed data, since there is no problem in using the
compressed latent space. For anomaly detection, if the PSNR
value is less than the threshold value, the system is set to judge
the image as an anomaly because there is a high possibility
that it is not a road.

In order to realize the above functions, the structure of VAE
is described inll-A1l. The details of the FPGA structure are
explained in II-A2, and finally the SoC FPGA structure is
explained in II-A3.

1) VAE Structure: A schematic of the VAE structure is
shown in Fig.2. Since 16 x 16 images are used, 256 input
dimensions and 256 output dimensions were used in the
design. The latent space was designed to have 16 dimensions
to allow for a certain degree of discrimination even after
compression. The encoder part uses a ReLU function for the
mean and a soft plus function for the variance. The decoder
part uses a sigmoid function.

flz)==x : ReLU function (1)
f(z) =log(1l +€") : Softplus function)
1) . .
flx) = P : Sigmoidfunction 3)

The VAE learning method is shown in Fig.3. First, a large
number of road-only blocks are prepared. The blocks are used
as teacher data to train VAE. The learning conditions are
summarized in table II. In this case, we prepared a photo
showing a road (the upper left image in Fig.3) and prepared
the teacher data by converting the part showing only the road
(the upper right image in Fig.3) into a block. The VAE was
trained in MATLAB, and the weights and parameters output
from the training were used to control the VAE mounted on
FPGA.

2) FPGA Structure: The board used was ZYNQ-7010 man-
ufactured by DIGILENT. In this design, X (16), W (16 x 2),
and b(16) were prepared as input data and Z(16) as output

27

2 2
o Whea i 129
| 2 w3
Zreant | @meant p
x 3
2 73| a3
2
x3 + zi
2
2% | @art £ 73| ad
. .
° °
*
: 2
254 Zieants | @meante)
2
255, + Zis
2 2
256, H Ziar16| Qarte £1
Wiar 16 dimensions
" N 2
256 dimensions @ w
256 dimensions

Fig. 2: Structure of 256 x 16 x 256 VAE

Extract road sections

’
4
7
7

s
7’

16 Pixels

15|
m]
O
g

16 Pixels

eta: 0.005
epoch: 10000

learning condition

Fig. 3: How to study VAE

as shown in Fig.4 (the number of dimensions in parentheses).
The unit enclosed in the red box, where Output; is the output,
performs the operation of multiplying the input and weight
parameters, as shown in Equation 4.

Output1 = X1 X W11 (4)

Sixteen such units are shown in the blue box. The final Z
output is the computation of Equation 5.

16
7, = ZX x W1; + bl
=0

®)

Initially, we wanted to put 256 input and 256 output
operations on the FPGA, but there was a capacity limitation.
Therefore, we designed the VAE of 256 x 16 x 256 to have
16 inputs for X to make it easier to realize the VAE of
256 x 16 x 256 that we designed this time.

TABLE II: VAE learning conditions

epoch 10000
eta 0.0005
Layer2(number of latent spaces) 16

The 28 th LSI Design Contest in Okinawa 2025

Input(X) ‘

Combined multiply and delay units.

Unit combining 16 red units
and summing the outputs

Input(wi)

Input(b1)

Fig. 4: FPGA structure

3) SoC FPGA Structure: Fig.5 shows an overview of
the SoC FPGA system structure. The processing process-
ing_system7_0 performs various processes through the bus,
and plays the role of CPU. The dut_forwa_ip_0 part is the
part of the FPGA created this time. The resource utilization
evaluation after implementation is shown in Table III.

Next, an overview of the SoC FPGA processing is shown
in Fig.6. The SD card contains weights and parameters stored
in CSV files and image data in RAW format. The CPU reads
these data. The CPU then processes the input data according
to the created FPGA and sends the data to the FPGA. The
FPGA executes the data as soon as it is stored and stores the
output results. The CPU reads the output result and processes
the output data. These processes are repeated.

This VAE is 256 x 16 x 256, and the FPGA structure created
in II-A2 is 16 x 2. The part of the FPGA that can be processed
by running the designed FPGA once is shown in Fig.7. The
encoder assigns the computation of the two outputs to 22 ..
and 22,,. Since the FPGA can process 16 out of 256 input
dimensions in a single use, it is necessary to use the FPGA 16
times to compute a single latent space. The output 22, and
22, are designed to be stored in b. Since there are 16 latent
spaces, the encoder calculation runs a total of 16 x 16 = 256
times. When computing the decoder part, only one FPGA run
is needed to obtain 2 out of 256 dimensions of the output of
the third layer Z?. Therefore, the FPGA is run 128 times in
the decoder. This kind of control was created using a CPU.

The 22,.,,.» 22, and z> obtained from the output are used
to calculate a2,.,,, a2, and a® using the active functions
in the software. Furthermore, 22 is also calculated on the
software using a? and a2 . Finally, PSNR is measured

mean var:*
by comparing the input and output a® values.

B. Experimental Procedure

In this case, we prepared three types of images shown in
Fig.8. Fig.8a is an image without any falling objects. Fig.8b

28

TABLE III: FPGA Resource Utilization

Resorce Utilization | Available | Utilization[%]
LUT 3301 17600 18.76
LUTRAM 62 6000 1.03
FF 3297 35200 9.37
DSP 64 80 80.0
10 12 100 12.0
BUFG 1 32 3.13
. B P00
woax ZYNQ

’“m,m, I

10 4 |l—ID> teds_abis

Fig. 5: SoC FPGA Configuration Diagram

and Fig.8c are images with falling objects, and were prepared
for comparison of anomaly detection. The size of the image is
512 x 512, and the image is grayed out when passed through
VAE. The image is processed by dividing it into 16%imes16
blocks, and the PSNR is measured. The PSNR is compared
between the MATLAB output and the FPGA output. The
PSNR output from the FPGA is written to a CSV file, and
the data is presented in MATLAB.

III. EXPERIMENTS AND DISCUSSIONS
A. Experimental Results

First, the SoC FPGA execution screen is shown in Fig.9.
The CSV file stored in the SD card is read by pressing button
0. The image is passed through the VAE by pressing buttons
1 to 3. Fig.9 shows the state after button 0 is pressed and the
parameters are acquired.

1) Comparison of output of image 1 : Fig.10b shows the
output in MATLAB and Fig.10c shows the output in FPGA.

SD card CPU

data acquisition
data preprocessing

Send data to
FPGA
Load data into
FPGA
data post-
processing
Execution Result
Processing

Image Data

Parameter

FPGA

computation run

Data

processing

Execution Result

Fig. 6: SoC FPGA Processing Overview

The 28 th LSI Design Contest in Okinawa 2025

Range of operations in a single FPGA

dimensions

Input 16
dimensions

dimensions

256
dimensions

256
dimensions

dimensions

Fig. 7: Image of FPGA use

(a) Image 1
Original image

(b) Image 2
With falling objects

(c) Image 3
With falling objects

Fig. 8: Evaluation image to be tested this time

In MATLAB, the PSNR around the road area shows a value of
25 or higher. In addition, parts of the sky and mountains also
have a high PSNR. The FPGA output shows a lower overall
PSNR compared to MATLAB. However, the PSNR of the road
section is around 25, which is not a bad result.

2) Comparison of output of image 2 : Fig.11b shows the
output from MATLAB and Fig.11c shows the output from
FPGA. Both MATLAB and FPGA outputs show a worse

FESSSSES SRS S

AR R

Fig. 9: SoC FPGA execution screen

29

(a) Image 1 to be tested (b) PSNR output block (¢) PSNR output block
by block in MAT- by block in FPGA
LAB

Fig. 10: Processing results for image 1

(a) Image 2 to be tested (b) PSNR output block (¢) PSNR output block
by block in MAT- by block in FPGA
LAB

Fig. 11: Processing results for image 2

PSNR in the area of the falling objects.

3) Comparison of output of image 3 : Fig.12b shows the
output in MATLAB and Fig.12c shows the output in FPGA.
Unlike the output in image 2, the PSNR in the area where the
falling object is located is conversely improved.

4) Summary of results: Comparing the output images, there
were differences between the MATLAB and FPGA output
results. However, since the PSNR was higher for the road
section in FPGA than for other sections, we do not think that
there was a failure.

In addition, it was found that the anomaly detection was
affected by the color of the falling object. The PSNR worsened
when the object was white, while the PSNR improved when
the object was red.

B. Consideration
From the results obtained, the following three points are
discussed.

1) The point that PSNR is high except for roads
2) MATLAB and FPGA outputs are different

(a) Image 2 to be tested (b) PSNR output block (¢) PSNR output block
by block in MAT- by block in FPGA
LAB

Fig. 12: Processing results for image 3

The 28 th LSI Design Contest in Okinawa 2025

Fig. 13: Image 3 converted to grayscale

3) PSNR is improved even for red objects

(1) can be considered from two points of view: the effect of
grayscaling and the effect of VAE characteristics. In particular,
when the sky portion is grayscaled, it has fewer features than
the road portion. Therefore, the VAE created in this study can
represent them, and it is thought that the image restoration
capability of the VAE can be demonstrated.

(2) is considered to be caused by the variables used and
the fixed-point error. However, since the detailed output has
not been confirmed, we will conduct further verification to
determine the cause.

(3) is thought to be caused by grayscaling. When the red
color was converted to grayscale, it was almost the same as
the color of the road (Fig.13). This suggests that the color
scale should be used to correctly identify falling objects.

1) Evaluating adoption in edge computing: We will evalu-
ate whether it can be adopted as edge computing.

First, we evaluate image compression. This time, the PSNR
threshold is set at 25, and judgments are made on the basis that
images above the threshold are compressible and those below
the threshold are uncompressible. The number of blocks for
which the threshold is 25 or higher, the capacity before com-
pression, the capacity after compression, and the compression
ratio are shown in Table IV. The size calculation is shown in
the formula (6). Since the original image takes values from O to
255, each pixel is 8 bits. Since the latent space is compressed
data, 8-bit fixed-point numbers are used. The B denotes the
number of blocks above the threshold.

size = B- 16 - 8[bit] + (32 - 32— B) - 16 - 8[bit] (6)

The compression ratio for all the images is close to 70%. By
sending compressed images to the cloud for processing, it is
possible to reduce the amount of traffic from the base station
to the processing server and to improve the processing speed
in the cloud.

Next, anomaly detection is evaluated. As shown in the
experimental results, whether an abnormality can be detected
depends on the color of the falling object. However, since
abnormality detection is possible when the object is white, we
believe that it is possible if the processed image is a color
image. If the recognition is performed on the area where the
vehicle is going to run, it is possible to avoid accidents by
immediately notifying the vehicle of the recognition results.

30

TABLE IV: image compression effect

No. | Blocks | Before[bit] | After[bit] | Com.ratio[%]
1 346 2097152 1432832 68.32
2 305 2097152 1511552 72.08
3 349 2097152 1427072 68.05

Finally, we evaluate real-time performance, which is impor-
tant in edge computing. The system took about 4 to 5 seconds
to input an image and output the PSNR. If the system were
to continue at this rate, an accident could occur before an
abnormality judgment could be made. The reason for the long
processing time is thought to be that data was written and
read many times using a time-consuming bus. In this case, the
circuit that could be mounted on the FPGA is a part of VAE,
and the FPGA is executed many times, and data is transferred
using the bus each time. In fact, to process a 512 x 512 image
in VAE, the FPGA is run 393216 times. However, it is highly
possible that this problem can be solved by using a higher-
precision FPGA.

IV. CONCLUSIONS AND FUTURE PROSPECTS

In this study, we implemented VAE on FPGA and con-
structed a system that compresses road images and detects
anomalies. The results show that image processing in edge
computing using FPGAs is feasible.

Although the system has some problems, we believe that
they can be solved with appropriate improvements. Therefore,
we believe that the system has potential for future industrial
applications.

This contest allowed us to experience LSI development us-
ing FPGAs. I felt the future potential of FPGAs and recognized
that FPGAs are necessary devices for efficient computation in
today’s world where Al is used on a daily basis. I would
like to continue to develop FPGAs that can demonstrate their
capabilities, and since technologies for developing FPGAs,
such as high-level synthesis, are evolving day by day, I would
like to challenge myself in various ways.

ACKNOWLEDGMENT

Thank you to the LSI Design Contest Executive Committee
for organizing this contest, and to the organizers, co-sponsors,
sponsors, and supporters for their support. I would also like to
thank all the professors who provided various kinds of support
even though they were not assigned to my laboratory.

REFERENCES
[1]
[2]

H. Morikawa, 5G Jisedai Ido Tsushin Kikaku no Kanosei, Iwanami
Shoten, Tokyo, 2020.

Y. Tanaka, N. Takahashi, and R. Kawamura, ”IoT Jidai o Hiraku Edge
Computing no Kenkyu Kaihatsu,” NTT Giho Journal, vol. 27, no. 8, pp.
59-63, 2015.

H. Yokota, S. Oda, T. Kobayashi, D. Ishii, T. Ito, and A. Isozumi, "IoT
no Missing Link o Tsunagu Edge Computing Gijutsu,” NEC Giho, vol.
70, no. 1, 2017.

Ministry of Internal Affairs and Communications, “Reiwa 6-nenban Joho
Tsushin Hakusho,” 2024.

T. Yamamoto, A. Hashimoto, and H. Okamoto, ”Heikin Gazou ni Taisuru
VAE Jjou Kenshi no Tekiyo ni Yoru Doro Rakka-mono Kenshutsu,” in
Proc. Annu. Conf. Jpn. Soc. Artif. Intell., vol. 35, 2021.

[3]

[4]
[5]

The 28 th LSI Design Contest in Okinawa 2025

[6] “LSI Design Contest,” Available: http://www.lsi-contest.com/. Accessed:
2025-01-31.

31

The 28 th LSI Design Contest in Okinawa 2025
ERURE D BB EFHE > R 7 A
—VAE %\ 7= B&IME 7 a & 2 O RsE i fE —

1%t Sizumasa Kojo

Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
Fukuoka, Japan
2317114@kyushu-pc.ac.jp

. IL®IC

NUDOETHEEBERMT S VAT AF, BdniddE
BT WEEEORN R ELE B E L-E
FEREIRCTH D, HERO BRI L DREFIEITIM@ET
HHHLOD, MEZORBME KL, HoIXs >
ENEUCDMENRE L, -, KEEEOBIEIC
BT, —BEOHLWEEHRE AN TITY Z &N
WHETHDH EHERENTWD 1. ZOEICKST
B2 ARBFGE CII B ALERHT & Mk 8 7 e =)
ALEMAE LTV AT LB LT,

AR AT A, BEEIMBEPIBIT H7=0lc, /S F
HOEOACHE COREZME L, Tz iKicE
Y7 EIFTEOREER Y T A A THET S, BED
Wz 11w,

KEFFED R FIL, BLELE BT 2 WERIEDOH 7=
TR T AL O TH Y, BRI KR RE T A
NIBT DR EEEOEBICHE ST L E X
TW5, M2 T, KVATLADHEANZLY, 1EEED
AR T ZROHIRIC S SRR D Z & A S
ns,

FPGA+— F (ZYBO)

Webh £ 5 5 _2_& i /
N , N
= E[1] El|O ':>\¢ED;

L
X 1. BRI

1. A

A, LEEWE

X 2(a) 1R L dE@E L, BB ClZ 7 e h2 A4 7D
WEEIFELXHBE LD THD, FRit et RITEH
WTIE, K20 IR TEIIC3WILCAD Y 7 b T
Tinkercad ZffH L. K% 72 ~TIEFHH & #E &M 2 52
it U7z

32

2" Masaya Furuta
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
Fukuoka, Japan
2317132@kyushu-pc.ac.jp

AL, A—T MO TYA U ERALTED .,
NIIITB L BHOT 7 UAREER L, £, &
EEIZIZAA vF, LED, T—%, AE—H—, H A
7. FPGA AR — R, BEERPHEH I TS, BIER
WX AA »F, LED, E—H, A= —% T 5
OOLDOTHY, TOREREK 3, 4127-7,

AL F T LI L0 o OEFH OB % B
WL, WU ETHICRD L HECRENRE < A L
7o TW5h, F£72, LED THHEMIRIZEET S
ZENHEETH D,

AREEEIZIINBRERERN 70 <, NUDEITH 24 AT
T LIXTERY, ZTOEOHEANMETEORL 58
VEME L, USB I AT bHiAI-> TET H AR
ZLTW5, %%, RNUrz2iE L CETH 24
THRE T COEMNBMLERTRTH D,

(a) RUfE L 7228 (b) CAD
X 2. Z5E DS

S

X 3 IR TOK, A—h—, DCE—F, BLIORC
P —RE—F OHERHRIKX TH D, KT /3 ADFE
Wi U7 IR S B S HIEARE STk b, 2
HI7R e & e 2 HEfR L TV 5,

GND

GND

3. 7V F a2z —H[EKX

The 28 th LSI Design Contest in Okinawa 2025

3.3v

12v

AL>SF-TLED;

U=

FPGA

1 1
2 24

T
’J;-- GND B0
TD62083

GND

B 4. NJy - a4 el

25C1815

L] E1£1€]£]¢]

GND

B. > X7 AME
K AT LAORFBEEZ LT IZRT,
+ ZYBO Zyng—-7020
» Vivado 2022.2
- Xilinx Vitis 2022.2
+ MATLAB R2022b

R AT7T AOETHRHE AN 7T T Y
ALTIE, Web AT MBEAGLZHEBRE AT E LT
VAE (Variational Autoencoder) (ZH(GL. H 500U
OFEIEEIT OB T — & Ll - i E L
MELFRETDHZETEITHOHBIEZIT Y, FD%,
VAE D EIZE-SE LED, AE—H—, FHE—Z D
HIEE 52 BIEERICIEET D (X5 58),

CERT - 232G

C =R =
- VAETHIF BEIE
- HEMESIE

h A S TEREIRG -

1 (Eon(E

- E— 2 OFEE
- LED®DHI{E

LED® 4T
AE—=h—H18%
E—2TEAHEL

X 5. JLBE DR

X6 I\ZARY AT LD FPGANE 7 v v 7 K& 7, £
e IP 7 vy 7 OEIXLLTO®EY Thob, £/-, &
L= R =7 A X&Rwd,

CPUDT a7

VAE #4797 m v/

SW (AT o7 vy

LED, &— 7 LED flfip 7 v 7

DCE—H, RCE—%, A —h—HfloT oy s
X 6. FPGA D7 & v 7 [X]

SICISICIG)

33

#1.N—Fy=7H%A4X

Resource Utilization Available Utilization. ..
LUt 4156 53200 7.81
LUTRAM 62 17400 0.36
FF 4376 106400 41
BRAM 250 140 1.79
DSP 72 220 3273
o] 24 125 19.20
BUFG 1 32 313

C. ERFTHPED F %

B ERLC b —AX —TMEAT 5 & ETF B IR
CEZAIZHDN, BRVEBEBINMEIZLST, B A
TNBEARD & EICETIAEN T CAELC R
NHEELT, TOd, RUrEINEEEET D
LELTE (MTHR)

2 7. X OFEE

ARWFFETIL, VAE I[ZHTLEL S - i T — & 2 f44s
T5, NUOETHITFRIZENSCT S, BAT LD
HEED B L EBEETIMNEND D20, XU 2ROH
BCiEie <, PRI OB ALY B o 7o B & T
el (X8sEW)

< %
.

4] 8. /32 o> e g

% 7. FPGA(ZYBO) CHLH A4 270 Ei{R /) A X% &
BT A50ENFEA L., L FOBEGAEE 2 ZE 1 C
VAE EFLDOASE L TOERELEX T,

O iR EER L
ASTEE A 64X 64 7 EAD[0, 1]EHEICER
fb3 5z &, HRAMEREILL, VT AZA
LDALFLA~DOR G Z A RE L Lz, EHE Ty b U
— 7 OFE IR B LT,

@ VL —RAlr— VW
T —WlilgE S — A — VI D T T,
EFIVOFHBE R m EESE, BEEhHoORE %

EDDHZEEER LT,

The 28 th LSI Design Contest in Okinawa 2025

. £k

A ELRAA

AREBRTIZ, MATLAB Z VT I a2 L—va U &AT
o7, LT, REBRTOD VAE £ V%K 9 ITRT,
ARFEERTIE, ADE. 18 % 64X64(4096) THI[HE
X 128 ORERRTITH Z L lcLi-. F£7-. /SO,
U F—AZ—%HLTMALZLOEERE L, M
B A — LTV 5,

ANE
4036
—J

szaﬁré
128
v’/

9. VAE &5 /L

VAE ZHWTLLTFTOEREIT-72, FEBr 1 T, #
i — & FARZ A LIz a1, JuOHT — 2 MR IE
B - H SN2 02/ T 5, I, FEBr 2 T
WX T — 2 2T — X 2 NS LT=EAc., #bhT
—HIZE VIR E) L, B D RS D,

EBr 1 CHERLERT —% %K 10 127, T L
T, EEr2 CHL 1008 T — 2 Z2EH L, AT —
A% 6 FEOEITHOES B A H L-, oM
B2 11T, 1AB & 6 B BITERTT —% & 135l
HIZoL o272 B B, 2~5 BEIZAW UG
WY 7T HICR 2 EATE COWRBEOHEZE TH S,

Teacher 1
S B

¥ 10. SEERCHEH L= b7 — ¥

Data 2 Test Data: 3 Test Data 4 Test Data: § Tost I;m 6

Are g

B 11, Bk 2 CHEHA LA T —4

B. G R

FR 1 OFREX 12187, #fiT—2 L HhT—
AEHTsE, WAT =2/ A ADLHI b D
NEENTEY, AT — X % EREICHR TE T\

W ENHEREINT, Zo L X, FEERIT0.0001, F
HHEEIL 2000 T{T o7, ZDE EZOEEEIE =T —
BOBRER L7 7% K13ITRT, ZOT T 70
5. FEEF 2000 [F O L XTI T —503% < VAE R
T TE W e B2 bND, ZOH%E
A% 10000 [FHZHER L, FESE 21T 72,

Teacher 1 ~ Image 1
I~ N g LT

0 200 400 00 800 1000 1200 1400 1600 1800 2000
Epoch

X 13. =7 —# L FF % (1)

LEEE AR LT & X O ERFE R A 141277,
HimT—2 LT — 2 &L= 2 A, ELLH
HNENTWDZ ENERTE T, £/-, ZDLED%
Bl e =T =8OR E R L7777 (K 15) 7256
T —ENEELTNDEI NN,

Teacher 1
s ¥ g5 1 i -

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Epoch

X 15. = 7 —% & 2 E K (2)

The 28 th LSI Design Contest in Okinawa 2025

EBr 1 TIE. FEEA 0.0001, %”Eﬁ%wmm
WETDHI LT, BT —42%2 AN LIHBEITITTOH
BT — 4% Z IEfEICHBTE 5 2 kwﬁ;émto

WIZ, S8R 2 TlE, FEBR 1 OfERN L5 L i
7R AR (0.0001) & R (10000) 24 H L7z,
FhR 2 OFEREZK 16 1R T, EOATIT—HIZH LT
by BT — X I WEBRE)95 2 LR TX
oo ZOREREREIZ, 1 KB E 6 BB OEBZED] R
BT EHD/R, 2~5 BB QBB Z 7126 TRy

LHIET DD, AT =2 LM T —2D#ES%
BHH LT,
R LR REX 1T R, K17 D 1

Hé 6MEDZEDIZNSL o TEY, 2~5 KBHDZE
500

B NEGIRET R SHET D EEEZRE

5 :Ut%b\: EDHERTE o, TN BFESD,
LU D%
L/f_.o

@_ @“[® @® 6 ©

X 16. A7 —% LW —4 (3)

900
800

700
600
500
400
300
200
100

0

i
N
=

67]‘51@ {%%
X 17. 57— % D#5y
LEDFEE NS, F=EEE 0.0001, FH Bk %

10000 [E], =453 DOAEHEA 500 LTI+ 52 THBY
LT AHENIEHETEL LR T,

IV. b b ic

AWFFETIE, NUOETHEZ BB THIET 2HED
PARE 2T Tc, AILEIT, BERUERICH W T/ K
DR AN U, W72 800 H 2 8E T 2 HRE 2 0 2
T2, L, BIRBECIIREDEITHRA 1 FEL

35

DHEETHZEMTET, FIHEFET L DHERITIE LT
BEX B OBIRN TERWEWIHEN DL, DT
W, V=D T E X IR A B E FTHE & T A HEEED
BIAMNEE SND, £z, WAEOERE 100%0D 3
V(K 18) oy EIFEAEAIEBRE L THEHA L
BT, 225308 500 LA EIC7e v, /e E &HE
THZENTERNhoTe, ZOD, HWWNTETT
72 BIFEEO /AT B RS LT BER D D,

% 18.

INEDAERIFY 100%D /%

Fo, AL FEERITITOBR. EED N A TRZ O
DOERENEIRREICEI S END Z & T, MDA
WAHEO U A7 B’ &IND, £07H, HEEICHEHT

ﬁﬁ%mﬂ@@mW%@ WICEE L, B omEgE

it 2 G5 R%FH R RO B 5,

mzf\%ﬁﬁ@%ﬁﬁﬁ%ﬁiéﬁétw\ﬁﬁ
B 1E & e/ OFEFIC XIS LIz T — % &~ Ok
FE L. EEBEREMEET VT XAOBANE 2D
nNo, &HI12, BEROBIEIRED = XLV —2FR %20
&5z ET PAEFASCFIEREA & L TOEH
MEEHODHZELEBETHD, ZTNHOWREZEL T,
X0 = — Xt T RE Ze 2 iE DKL Z BHIF L T
W5,

23 3Lk

(1] boEO
FC BT 2
https://www. waseda. jp/fcom/soc/assets/uploads/2015/01/wcom4 [
Accessed: Jan. 30, 2025].

WS HEREH O MR B 2 R P ARSI

The 28 th LSI Design Contest in Okinawa 2025

HW/SW Co-Design for a Variational AutoEncoder
targeting Anomaly Detection on FPGA

Tuan-Phong Tran, Thien-Duy Ho, Tung-Bach Nguyen, Xuan-Tu Tran, Duy-Hieu Bui
VNU Information Technology Institute
144 Xuan Thuy Road, Cau Giay District, Hanoi, Vietnam
Email: duytper@gmail.com

Abstract—Variational Autoencoder (VAE) is a generative
model based on autoencoders, utilizing a latent space with
probabilistic distribution to generate new data. VAE is applied
in various fields, such as image generation, data compression,
and text generation. This work presents the design and
implementation of a VAE for anomaly detection on FPGA by
using co-design techniques to optimize the VAE model in
software first and then accelerate the encoder part in hardware
to improve performance. The base Variational Autoencoder
(VAE) is from the work in [1] on Kaggle, which uses the MV Tec
AD dataset for anomaly detection. To adapt the model for FPGA
deployment, we redesigned the reference model by reducing
kernel size and the number of filters, removing the batch
normalization layer, and replacing the leaky ReLU activation
with ReLU. These modifications reduced the model size by a
factor of 10 while only resulting in a slight accuracy drop. The
proposed model is then retrained with a 16-bit fixed-point
representation instead of a 32-bit floating point. Due to the time
limitation, the hardware accelerator for the encoder was
designed using High-Level Synthesis (HLS) to accelerate the
development time, while the rest of the proposed VAE model
was performed in software on the Pyng-Z2 board. The
hardware implementation results of the encoder show that it
runs more than 180 times faster than the software one while
occupying a small area of the programable logic on the Pyng-Z2
development board. The full system of the encoder IP integrated
with the Zyng SoC occupies less than 2500 slices on Pyng-Z2
FPGA.

Keywords— Variational Autoencoder, High-Level Synthesis,
Hardware Description Language

I. INTRODUCTION

Maintaining product quality is extremely important in the
manufacturing industry. If anomalies are not detected in time,
they can lead to equipment damage, reduced operational
efficiency, and potentially negatively impact employees’
health and morale. Automated anomaly detection systems
help reduce costs by enabling early issue detection, which
minimizes maintenance expenses and decreases production
downtime caused by failures. As a result, anomaly detection
methods have become essential in various fields, including
healthcare, manufacturing, and food quality monitoring.

Manual inspection methods rely on human observation
and judgment, such as visual product inspection, manual
sorting, or checking basic parameters using simple tools like
scales or measuring devices. Although still widely used, these
methods can be inaccurate and prone to human error,
especially under high workloads or when high precision is
required. Similarly, traditional machine learning approaches,
such as classification models, require manual feature
engineering, which is time-consuming and can lead to

36

suboptimal results, particularly when dealing with highly
dynamic and complex data.

Our project uses variational autoencoders (VAE) as the
core deep learning model to apply anomaly detection in
hazelnuts. The goal is to detect defects or anomalies in
hazelnuts that may indicate production issues, such as damage
or irregularities in size, shape, or color. VAE models are well-
suited for anomaly detection due to their ability to learn
complex data distributions and generate new data points from
these learned distributions. By training the VAE on a dataset
of normal hazelnuts, the model learns to represent the typical
characteristics of a hazelnut. It can identify deviations from
this learned normal distribution when presented with new
data, thereby detecting anomalies.

The software implementation of VAE presents several
challenges. One of the main challenges is the high complexity
of the original VAE model, which contains approximately
three million parameters, making hardware deployment
difficult. On the hardware side, optimization is challenging
due to resource constraints, as VAEs typically have millions
of parameters, making deployment on FPGAs or embedded
systems difficult. Latency constraints are also critical in real-
time applications, requiring an efficient inference process to
ensure timely processing. Moreover, memory bandwidth
poses another challenge, as managing large models in
memory-limited environments requires careful optimization.

We applied a Hardware/Software co-design strategy,
where the FPGA handles computationally intensive tasks
while lighter tasks are executed in software. In our
implementation, the VAE model—specifically the Encoder
block—is designed as a hardware IP core, while the sampling
layer and decoder are implemented in Python on the Pyng-Z2
FPGA development board. By adopting this co-design
approach, we optimize system performance and efficiency,
enabling the deployment of large-scale VAE models on
resource-limited FPGA platforms while reducing latency and
improving real-time processing capabilities.

To address these challenges, we redesigned the reference
VAE model in [1] to reduce the number of parameters from 3
million to approximately 300 thousand for hazelnut anomaly
detection while maintaining the model accuracy. Our
optimization facilitates easier hardware deployment without
compromising performance. By combining model complexity
reduction, synthetic anomaly data generation, and FPGA
implementation, we successfully tackled key challenges in
applying deep learning for defect detection in hazelnuts.

The rest of this paper is organized as follows. Section 1l
presents our proposed VAE model’s architecture. The
reference and proposed architecture will be evaluated in terms

The 28 th LSI Design Contest in Okinawa 2025

of model size, performance, and accuracy. The proposed
hardware architecture for the encoder is depicted in Section
I1l. After that, Section IV presents the hardware
implementation and the system integration of the encoder
model with the Zynq processing system on Pyng-Z2 FPGA
development board. Finally, there are some conclusions and
perspectives in Section V.

Il. PROPOSED VARIATIONAL AUTOENCODER ARCHITECTURE

We first started with a reference VAE model on Kaggle,
which uses the MVTec Anomaly Detection (MVTec AD)
dataset. This model has over 3 million parameters with an
accuracy of approximately 90%. To optimize this model for
hardware implementation, we used the HW/SW co-design
approach to optimize the model in terms of the number of
parameters and throughput while maintaining similar
accuracy. Our proposed model is more suitable for hardware
implementation on FPGA. This section presents our proposed
VAE model for hazelnut anomaly detection along with the
optimization techniques to implement the target model more
efficiently on FPGA.

A. Hazelnut anomaly detection dataset

The MVTec Anomaly Detection (MVTec AD) dataset [3]
is a well-known anomaly detection benchmark designed to
evaluate algorithms used in industrial applications, such as
defect detection in manufacturing processes. This dataset,
provided by MVTec Software GmbH, consists of images
categorized into object and texture types, totaling 1,535
images. These images are divided into training and test sets,
with approximately 1,000 images used for training and 500
images designated for testing. The training set includes both
normal (defect-free) and defective samples, while the test set
contains images with previously unseen anomalies, allowing
for a comprehensive evaluation of model performance. Some
samples of the MVVTec AD dataset are displayed in Fig. 1.

Regarding annotations, each image in the MVTec AD
dataset is labeled with ground truth information about the
location of defects. These annotations are provided as either
pixel-wise segmentation masks for localizing defects or
image-level labels indicating the presence of anomalies. This
dual annotation format supports localization tasks (identifying
the exact location of defects) and classification tasks
(distinguishing between normal and defective objects).

Bottle ¥

Capsule Hazeluat Metal nut

'6
'0
.0
.0

5
*

QOO0
DO

LN

Fig. 1. MVTec Anomaly Detection dataset’s samples [2].

B. The proposed Variational AutoEncoder architecture

1) Original architecture
Fig. 2 illustrates the architecture of the reference model in
[1]. It contains three main parts: the encoder, the decoder, and
latent space sampling. The entire VAE model consists of over
3.5 million parameters, with the encoder responsible for over
1.5 million parameters and the decoder responsible for 2.0
million. The latent space introduces a learnable sampling

37

mechanism from the mean and the variant from the encoder.
The model effectively compresses and reconstructs images
while ensuring smooth transitions in the latent space through
the reparameterization trick [xxx].

The encoder compresses input images in a 32-bit floating
point (FP32) format into a latent representation through four
convolutional layers. Each convolutional layer applies 3x3
filters to the input feature maps, followed by Batch
Normalization to stabilize training and accelerate
convergence. Finally, the Leaky RelLU activation function is
used for non-linearity, enabling the network to learn complex
patterns while mitigating the vanishing gradient problem. The
number of filters for the convolution layers is 64, 128, 256 and
512, respectively.

Instead of directly mapping to a latent representation, the
encoder outputs two vectors, mean and log variance, defining
a Gaussian distribution in the latent space. The sampling step
ensures the model learns a continuous latent space, which is
crucial for generating smooth interpolations.

64x64x3
= Conv2D:
- Fiters: 64

* Strides: 2

+ Kemel size: Std. Dev.

= Flaten = FC Latent||6:
Space

o :
= Batch norm = Batch norm
= Leaky Relu * Leaky Relu

Fig. 2. The reference VAE architecture in [1].

The decoder reconstructs images from the sampled latent
vector. It begins with a dense layer that expands the latent
space into a shape matching the encoder’s last feature map,
followed by a reshaping operation. The decoder then employs
transposed convolution layers to upsample the feature maps.
The first transposed convolution layer restores spatial
resolution to 8x8x256, followed by batch normalization and
activation. The successive layers progressively increase the
spatial dimensions to 16x16x128 and 32x32x64 while
reducing the number of filters. The final layer generates an
output of shape 64x64x3 using a sigmoid activation function,
ensuring that pixel values remain in the valid range.

The model’s accuracy on the training and test sets is shown
in Fig. 3. Both training and validation results reaches SS 90%.
Meanwhile, the loss function for the training and test sets is
approximately 0.001 and 0.002, respectively.

— s — aauracy

al accuracy U
k ey
0 o

i

/

s pee il
. vl Joss

003
002
001 05

0.00

Fig. 3. The accuracy and loss of the reference model with the hazelnut
dataset.

The 28 th LSI Design Contest in Okinawa 2025

Std. Dev,
- FC Latent

* Flatten

Fig. 4. The proposed VAE model’s architecture.

2) Proposed architecture

FPGA has limited logic elements, memory, and DSP
blocks. Additionally, real-time applications require low
latency, necessitating optimized inference processes for rapid
decision-making. Excessive resource usage can also increase
power consumption, impacting the performance of edge
devices. Therefore, optimizing and fine-tuning the model
architecture maximizes parallel processing capabilities,
reduces memory bottlenecks, saves energy, and ensures
hardware-friendly implementation on FPGA.

The reference VAE model faces challenges related to
resource constraints and suboptimal execution time when
being implemented on FPGA because it contains many
parameters with floating point operation. Additionally, in the
anomaly detection phase, the output of the VAE model only
provides a reconstructed image without highlighting the
anomalous regions. The reference work in [1] relies on an
existing library [5] that identifies anomalies from the
reconstructed image to obtain an image with detected
anomalies. We attempted to install this library on our PYNQ-
Z2 board, which is used for this project, but found it infeasible
due to its limited memory (only 512MB DRAM available).
The library requires more than 1GB of DRAM to run. We
replaced the anomaly detection method with a custom Python
program to predict and detect anomalies. While this custom
solution is less effective than the pre-existing library due to
time constraints, it still ensures anomaly detection capability.

The proposed architecture of the proposed model is
illustrated in Error! Reference source not found.. To reduce
the model size, we decreased the kernel size from 3x3 (in the
original model) to 2x2 and reduced the number of filters in
both the encoder and decoder blocks. A smaller kernel reduces
the number of convolution operations, while fewer filters
decrease the total number of parameters, optimizing
bandwidth and processing speed. Batch normalization was
also removed because it requires statistical computations
(mean, variance) and complex arithmetic operations (division,
square root), which are not suitable for hardware
implementation on FPGA. Additionally, Leaky ReLU was
replaced with ReLU since FPGA implementations typically
prioritize simple operations. ReLU only requires a comparison
and assignment, whereas Leaky ReLU involves a
multiplication with a small coefficient (ax) when x < 0,
increasing latency and consuming more hardware on FPGA.

After research and development, we successfully created
a new VAE model with approximately 300 thousand
parameters and nearly the same accuracy as the original
model, which was 89%. The training loss stays around 0.001.
The proposed model maintains accuracy and improves
effectiveness for hardware deployment. Fig. 5 shows train and

38

test results in terms of the accuracy of the proposed model
with the hazelnut dataset.

0.9

AR, TTTET
AM
/fﬂ
0.8

0.7
0.6
0.5

0.4 —
0.3 ,./

0 25

- accuracy
val_accuracy

50 75 100 125 150 175 200

Fig. 5. Train and test accuracy of the proposed model on the hazelnut
dataset.

Since the reference model is implemented in software
using the TensorFlow framework, processing floating-point
data during training and performing calculations within the
network is straightforward and efficient on computers.
However, floating-point computation is costly in resource-
constrained devices and hardware implementation on FPGA.
Therefore, we proposed to use quantization-aware training to
convert all input images and model parameters, including
weights and biases, to 16-bit fixed-point numbers [5] with 2
bits for the integer part and 14 bits for the fractional part. This
reduces the proposed model’s size and computation
complexity. Fixed-point computation is equivalent to integer
computation, which is less complex and more efficient than
floating-point one. After converting to fixed-point format, we
updated the weights and biases accordingly and tested the
model to compare its accuracy when working with floating-
point and fixed-point representation. Fig. 6 shows the
comparison of the reference model with our proposed one.
The reference model is 30 times larger than the proposed
model in terms of parameter size.

Compare of model memory size

™
<
o

17.73 MB

Kich thudc (MB)

= = = =
~ o ™~ “ ~
w =] w [=TT]

v
o

25
1.12 MB

0.0

vae_original vae_improved

Fig. 6. Comparison of the parameter size between the reference model and
the proposed model.

I1l. HARDWARE ARCHITECTURE

After optimizing the model to reduce the model size and
computation complexity using the fixed-point reprentation,
we continue applying the HW/SW co-design approach to
optimize the system. Due to the time limitation, we decided to
implement the encoder using High-Level Synthesis on FPGA
while the rest is implemented in software using Python on
Pyng-Z2 development board. This section presents our

The 28 th LSI Design Contest in Okinawa 2025

hardware architecture and its integration with the Zyng
processing system.

A. Our design flow

-

*

*{ IP core l Zynq7000 |7 "‘;':grgk]

L — T

HDL

CiC++
Co-Simulation

Fig. 7. Our design flow to implement the VAE model on Pyng-Z2
development board.

CIC++
Simulation

Vitis HLS Ds Pyng-z2

Fig. 7 presents our design flow to implement the proposed
VVAE model on Pyng-Z2 development board. Firstly, we train
the model and extract parameter files from the trained model,
including weights and biases in Tensorflow. These parameters
are essential for reproducing the model on another platform,
specifically in C++. The model is then translated from its
Deep Learning framework into C++ source code, enabling
smooth integration into embedded systems. Next, the Vitis
HLS tool converts the C++ code into Verilog generates an IP
core. Finally, the IP core is integrated into the Zyng-7000 SoC
on the Pyng-Z2 board. The image data (already converted to a
fixed-point format in the first step) is loaded into DRAM
along with the kernel weights and biases via the Zynq
processor. The extracted data from DRAM is then
reconstructed into an image using Python running on Pyng-Z2
development board.

B. High-Level Synthesis and Pyng-Z2 development board

High-Level Synthesis (HLS) is a technology that converts
high-level C/C++ code into hardware description languages
such as VHDL or Verilog for execution on an FPGA. One of
its main advantages is the significant reduction in
development time, as writing C/C++ code is much faster than
developing RTL code in Verilog or VHDL. Additionally,
HLS allows for easier optimization, enabling quick
modifications to improve algorithm performance. It also
integrates seamlessly with tools like Xilinx’s Vivado, which
supports exporting RTL code for FPGA implementation.
However, HLS also has some drawbacks, such as potentially
suboptimal hardware compared to hand-written RTL designs,
leading to resource utilization and performance inefficiencies.
Moreover, the generated RTL code may not be fully optimized
or easily controllable, making fine-tuned hardware design
more challenging.

For our project, we chose HLS due to the time limitation
in implementing the proposed model using HDL. HLS
provides a powerful approach to implementing complex
algorithms and computations on hardware using high-level
languages like C++, making it a suitable choice for
accelerating development while maintaining efficiency. To
deploy our design, we use the Pyng-Z2 FPGA development
board, which is based on the Xilinx Zyng-7000 dual-core
processor and is designed to run PYNQ - a framework that
simplifies FPGA programming with Python. The Pyng-Z2
features a Zyng XC7Z020-1CLG400C FPGA, which
integrates an ARM Cortex-A9 processor with FPGA fabric,

39

along with 512MB DDR3 RAM, microSD storage, and
multiple interfaces such as HDMI, USB, Ethernet, PMOD,
and Arduino headers. It is a versatile platform for various
applications, including real-time image and video processing,
machine learning, 10T, and embedded systems. Additonally,
tts ease of programming with Python makes it an ideal choice
for education and research.

C. Hardware and software design

1) Proposed hardware architecture

The proposed hardware architecture is presented in Fig. 8.
The system is divided into three stages: the first stage is
initialization, the second stage is data processing, and the final
stage is storage and result retrieval. In the first stage, the input
image data is loaded into DDR3 memory along with the
weights and biases of the VAE model. Next, in the second
stage, the Cortex-A9 transfers the configuration of the IP
along with the address of the image data, weights, and biases
in DDR3 Memory to the encoder IP to activate the hardware
accelerator. The encoder uses the AXI4 master interface to
load data into the Input Mem and Weights/Bias Mem in the
programable logic via the AXI bus. The Conv2D (2x2) block
then performs the convolution operation. A Finite State
Machine (FSM) controls the entire processing flow. In the
final stage, the processed data is stored in the Output Mem and
then transferred to DRAM in the processing system through
the AXI14 Master Interface. The processing system continues
to run the rest of the anomaly detection process in Python.

Processing System

Programable Logic
Encoder Accelerator (High-Level Synthesis)

N\
K=

Cortex-A9 dual core

SW/HW
Co-Optimization

Latent space
sampling in SW
Decoder + Anomaly|
Detect (SW)

AXI BUS

512MB DDR3

Input | | Weights
img /Bias
Temp | | Output

data data

Fig. 8. The proposed hardware architecture for the encoder module.

K=

N

The proposed hardware architecture has been
implemented in C++ with the optimization for High-Level
Synthesis with Vitis HLS 2021.2. The AXI14 master and slave
interface is automatically inferred through the HLS pragmas.
The proposed hardware architecture has been tested in C++,
co-simulated with the generated hardware module from HLS
and generated into a Vivado IP that can be integrated in to a
system-on-chip.

2)
Vivado

Integration of the encoder IP into Zyng-7000 SoC in

Fig. 9. VAE encoder module’s integration to the Zynq processing system
on Pyng-Z2 development board.

The 28 th LSI Design Contest in Okinawa 2025

Fig. 9 shows the system architecture of the encoder IP with
the Zyng-7000 via the AXI14 interface. The proposed encoder
IP has two interfaces: one master interface for direct memory
access and one slave interface for configuration. The two
interfaces are connected to the AXI bus. The Zynq processor
controls the encoder IP and can directly access the DRAM
memory for the input data, weights, and bias. This
arrangement reduces the workload on the processor during the
encoder execution.

Additionally, the system’s interrupt mechanism in the
connection between the Zyng7000 SoC and the IP improves
communication efficiency between the IP core and the Zynq
processor (Cortex-A9). Instead of the processor continuously
polling the IP’s status, the IP proactively sends an interrupt to
the processor when the encoder’s computations are complete.
This reduces the processor workload and enhances system
performance by allowing the processor to respond only when
an interrupt is triggered.

IV. HARDWARE IMPLEMENTATION RESULTS AND EVALUATION

A. Synthesis results

During the hardware design process using HLS, we first
develop a software model to simulate and verify the algorithm
on a computer. Once the algorithm is confirmed to work
correctly, the next step is to convert this model into C/C++
code suitable for execution in the HLS tool. When writing
C/C++ code for HLS, we use integer data types, minimize
complex loops, and optimize memory usage. The code is then
synthesized into RTL (Verilog/VHDL) for deployment on
FPGA. Finally, after obtaining the RTL code, the design is
integrated and tested on the FPGA to ensure it meets system
requirements.

The proposed encoder IP has been successfully
implemented using Vitis HLS 2021.2 and integrated into
Zyn(-7000 SoC using Vivado 2021.2. It has been successfully
synthesized, implemented, and validated on Pyng-Z2
development board. The software used Python to run on Linux
on Pyng-Z2 development board.

Fig. 10 shows the resource utilization of the proposed
design on Zyng XC7Z020 FPGA. The proposed design
occupies only over 7300 flip-flops and about 5700 LUTS, 7%
and 11% of the total flip-flops and LUTs on the targeted
FPGA Chip, respectively. It also occupied 5 DSP slices for the
convolutional computations and 111.5 BRAM tiles. The total
number of slices occupied is less than 2500, about 18.5% of
the total number of slices on Zyng XC72020 FPGA. Fig. 11
shows the proposed system mapped into FPGA resource after
placement and routing.

The encoder IP utilizes about 6,000 flip-flops and 4,650
LUTs. It occupies about 2000 slices in total (about 15% of the
total number of slices) with 111.5 BRAM tiles. This shows
that our proposed encoder IP has a small area. The only
drawback is the number of BRAM tiles which can be furthur
improve in the near future.

40

Resource Utilization Available Utilization %
LUT 6519 53200 12.25
LUTRAM 478 17400 275
FF 8022 106400 7.54
BRAM 111.50 140 79.64
DSP 5 220 2.27
LuUT 12
LUTRAM
FF
BRAM
DSP
0 25 50 75 100

Utilization (%)

Fig. 10. Resources Utilization.

Fig. 11. The proposed encoder design after placement and routing on FPGA.

B. Runtime between encoder hardware and software

After implementing the encoder IP into FPGA, we
integrate the hardware IP and the software using Pynthon on
Pynq platform for Pyng-Z2 development board. Pyng
platform allows to program the programable logic and control
the IPs through its python interface. This allow us to use
Python to build the driver for the encoder IP and integrate into
the rest of the anomaly detection application for hazelnut.

Fig. 12 illustrates the execution time comparison between
software (SW) and hardware (HW) implementations of the
encoder in the proposed VAE model. The results show a
significant improvement in execution speed when using
hardware acceleration. Specifically, the software
implementation takes 5.12 seconds, whereas the hardware
implementation only requires 0.028 seconds. This translates
to an approximate 180x speedup, reducing the execution time
of the encoder to just 3.76% of the software’s execution time.

The 28 th LSI Design Contest in Okinawa 2025

HW vs SW Time Comparison - Encoder Model
5.1215s

5

Time (s)

0.0282s
HW Time

SW Time

Fig. 12. Comparison of the execution time between the hardware encoder
and the software encoder on the Pyng-Z2 development board.

C. Model Results: Hardware Encoder - Software Decoder

Fig. 13 shows the final results of the model using the
hardware encoder’s output as input for the software decoder
that produces generated images consistent with those obtained
from a fully software-based implementation. This confirms
that the hardware encoder preserves essential latent
representations, ensuring reliable reconstruction by the
software decoder.

INPUT DATA QUTPUT DATA ANOMALY DETECTION

Fig. 13. Reconstructed image using the software-based decoder and anomaly
detection prediction.

V. CONCLUSIONS AND FUTURE WORKS

Variational AutoEncoder models face many challenges
when implemented on FPGA. The encoder and decoder use
the convolution 2D and convolution 2D transpose for data
processing, while the latent space sampling is complicated. In
this work, we proposed using a hardware/software co-design
approach to implement a VAE for hazelnut anomaly

41

detection. We have significantly reduced the number of
parameters compared to the reference work from 3.5 million
to about 300 thousand (approximately 10 times smaller).
Additionally, we have converted the model to operate and
compute in fixed-point format to accelerate hardware
execution and increase the throughput. Due to the time
limitation, only the encoding part was implemented into
FPGA using High-Level Synthesis. The proposed encoder IP
has been successfully integrated into Zyng-7000 SoC with low
hardware utilization. The testing software shows that the
encoder IP can run much faster than the software one. The
hazelnut anomaly detection has been implemented on the
Pyng-Z2 development board using the Pyng framework. The
test results show that it maintains the accuracy of the software
model. In the near future, we would like to optimize the
proposed system in terms of block RAM to reduce the block
RAM usage and implement the decoder into FPGA. The latent
space sampling can be implemented in software to reduce the
system’s complexity.

REFERENCES

Jiti Raska, “MVTect - HazelNut - Variational AutoEncode I1.”
Retrieved from https://www.kaggle.com/code/jraskal/mvtect-
hazelnut-variational-autoencode-ii

Yajie Cui, Zhaoxiang Liu, Shiguo Lian, “A Survey on Unsupervised
Anomaly Detection Algorithms for Industrial Images.” Arxiv 2022.
URL.: https://arxiv.org/abs/2204.11161

Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger,
Carsten Steger: The MVTec Anomaly Detection Dataset: A
Comprehensive Real-World Dataset for Unsupervised Anomaly
Detection; in: International Journal of Computer Vision 129(4):1038-
1059, 2021, DOI: 10.1007/s11263-020-01400-4.

Francof2a, “Fixed Point Precision Neural Network for MNIST
dataset,”
GitHub,[Online].Available:https://github.com/francof2a/fxpmath/blob
/master/examples/Fixed_Point_Precision_Neural_Network_for_MNI
ST_dataset.ipynb[Accessed: Mar. 2, 2025]

Van Looveren et al. Alibi Detect: Algorithms for outlier, adversarial
and drift detection. URL.: https://github.com/SeldonlO/alibi-detect
PYNQ-Z2 Reference Manual v1.0. URL:
https://dpoauwgwagsy2x.cloudfront.net/Download/pyngz2_user_manu
al_v1_0.pdf

PYNQ: Python productivity for Adaptive Computing platforms. URL:
https://pyng.readthedocs.io/en/latest/index.html

(1]

(2]

(3]

(4]

(5]
(6]

[7]

https://www.kaggle.com/code/jraska1/mvtect-hazelnut-variational-autoencode-ii
https://www.kaggle.com/code/jraska1/mvtect-hazelnut-variational-autoencode-ii
https://arxiv.org/abs/2204.11161
https://link.springer.com/content/pdf/10.1007/s11263-020-01400-4.pdf
https://link.springer.com/content/pdf/10.1007/s11263-020-01400-4.pdf
https://link.springer.com/content/pdf/10.1007/s11263-020-01400-4.pdf
https://link.springer.com/article/10.1007%2Fs11263-020-01400-4
https://github.com/francof2a/fxpmath/blob/master/examples/Fixed_Point_Precision_Neural_Network_for_MNIST_dataset.ipynb
https://github.com/francof2a/fxpmath/blob/master/examples/Fixed_Point_Precision_Neural_Network_for_MNIST_dataset.ipynb
https://github.com/francof2a/fxpmath/blob/master/examples/Fixed_Point_Precision_Neural_Network_for_MNIST_dataset.ipynb
https://github.com/SeldonIO/alibi-detect
https://dpoauwgwqsy2x.cloudfront.net/Download/pynqz2_user_manual_v1_0.pdf
https://dpoauwgwqsy2x.cloudfront.net/Download/pynqz2_user_manual_v1_0.pdf
https://pynq.readthedocs.io/en/latest/index.html

The 28 th LSI Design Contest in Okinawa 2025

Low Resource CNN Variational Autoencoder By
Utilizing BRAM and Shift Operation

Randy Revaldo Pratama*’, Naufal Afiq Muzaffar *!, Steven Tjhia*$, and Nana Sutisna*
*School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia
Email: {13222012,13222025,13522103} @std.stei.itb.ac.id, nsutisna@itb.ac.id

Abstract—This paper presents a low-resource Variational Au-
toencoder (VAE) optimized for hardware implementation using a
Convolutional Neural Network (CNN). To reduce computational
costs, two key methods are introduced. First, shift operations re-
place traditional multiplications, significantly reducing hardware
resource usage. Second, BRAM is utilized for output storage
by efficiently computing addresses based on layer operations.
Additionally, a Look-Up Table (LUT) is employed for activa-
tion functions, reducing computational complexity, especially
for the sigmoid activation and the exponential function used
in reparameterization. The entire network is implemented in
Verilog-HDL on a PYNQ-Z1 FPGA board, utilizing a fixed point
representation with 10-bit integer and 10-bit fractional precision
for each layer. Experimental results demonstrate a high degree
of similarity in which the average SSIM value of ShiftCNN is
0.3311, meanwhile the conventional CNN is 0.3397. Moreover the
average Mean Square Error (MSE) of the reconstructed image
using shiftCNN is a little bigger than without using it around
0.0554, while without using shiftCNN is around 0.0541. That
degree of similarity between FPGA-based results and Python
simulations validate the effectiveness of the proposed approach.

Index Terms—Variational Autoencoder, FPGA, ShiftCNN, Ver-
ilog

I. INTRODUCTION

Recently, technology has advanced rapidly, with zeros and
ones flowing through digital veins. The artificial intelligence
and machine learning industry demand a high performance
and cost-effective architecture in order to take the lead in
the industry. Among these, there is Variational Autoencoder
(VAE), enabling efficient data compression, generation, and
representation learning [1], which are critical for staying
competitive in the ever-evolving Al industry.

Variational Autoencoders (VAEs) utilizing principles from
neural networks. Unlike traditional autoencoders [1], which
focus solely on reconstructing input data, VAEs introduce a
probabilistic framework that enables them to generate new data
samples by sampling from a learned latent space [1]. This
makes VAEs particularly powerful for tasks such as image
generation, anomaly detection, and data compression.

At the core of a VAE is the idea of encoding input data
into a latent space and then decoding samples from this latent
space to reconstruct the input or generate new data [1]. The
training process involves optimizing both the reconstruction
error and a regularization term. This balance between recon-
struction and regularization is achieved through the use of the
reparameterization trick, which allows for efficient gradient-
based optimization [2].

42

While VAEs are typically implemented using high-level
frameworks like TensorFlow or PyTorch, there is growing
interest in deploying these models on hardware platforms such
as Field-Programmable Gate Arrays (FPGAs). FPGAs offer
the advantage of reconfigurability and parallelism [3], making
them well-suited for accelerating the computationally intensive
operations [3] involved in VAE inference. By leveraging
hardware description languages like Verilog, we can design
architectures tailored to the specific requirements of VAEs
enabling efficient and low-latency implementations [4].

The integration of VAEs with FPGAs and Verilog opens up
exciting possibilities for real-time applications, such as edge-
based image generation [5], autonomous systems [6], and low-
power embedded devices [7]. This combination of advanced
machine learning techniques and hardware optimization repre-
sents a promising direction for the future of Al and embedded
systems [8].

However, implementing VAE inference, especially for im-
age generation in hardware components, often demands signif-
icant computational resources, particularly due to the intensive
multiplication operations [9]. Additionally, the convolution
operation also takes a lot of LUT [10] needed for both input
and output, corresponding to the image size. To address this
challenge, we propose utilizing ShiftCNN [11], a method that
replaces multiplications with shift operations and additions,
significantly reducing resource consumption. We also propose
sequential operation by utilizing BRAM in order to reduce
the LUT needed for this network. This paper explores the
feasibility of implementing ShiftCNN and utilizing BRAM
within a VAE inference on an FPGA, aiming to optimize
performance and resource efficiency.

II. PROPOSED DESIGN

A Variational Autoencoder is an enhancement of a tradi-
tional Autoencoder that mainly consists of three parts, which
is Encoder, Latent Space, and Decoder [1]. It differs in the
loss function and the way its latent variables are learned
[1], making it capables to generating new data instances by
modeling raw data into a probability distribution [1]. The
architecture that we created is trained to reconstruct MNIST
datasets, which are 28x28 pixels for both the input size
and output size. For this type of data, Convolutional Neural
Networks are mainly used for pattern recognition [12].

The 28 th LSI Design Contest in Okinawa 2025

A. Variational Autoencoder Architecture

Our architecture is built in purpose to lower the resource
used for the model implementation, that in general, the encoder
has four layers starting from Convolutional 2D layer, Max
Pooling layer, Dense layer with 100 neurons, and lastly Dense
layer with 50 neurons. After that, we continue with two Dense
layers with 2 neurons to calculate the z mean and z log vari-
ance score which then will be used to calculate the z sample
score a.k.a. the latent space itself. As we can see, we use 2
neurons for the Dense layer because the target latent dimension
is 2 so we want two pair of z mean and z log variance. On the
decoder part, we have four layers starting from Dense layer
with 50 neurons, Dense layer with 100 neurons, Convolutional
2D Transpose layer a.k.a Deconvolutional layer, and lastly
Convolutional 2D layer.

Convolutional 2D Layer with Relu activation and 3x3 kernel and strides 1

M 2D Max Pooling Layer with 2x2 pool size and strides 2

Il Convolutional 2D Tranpose Layer with Sigmoid and 3x3 kernel and strides 3
Convolutional 2D Layer with Sigmoid and 3x3 kernel and strides 1

28x28x1 30x30x1 28%28x1

28x%28x1

26x26x1 100

L

Encoder Latent Space Decoder

Fig. 1. Variational autoencoder architecture.

The purpose of the Dense layer with 50 and 100 neurons is
to minimize the number of weights needed so it doesn’t take
too much resources when implemented in the FPGA while also
maintaining the model performance. We also utilize the Max
Pooling layer to reduce the output neurons that are connected
to the next layer.

B. FPGA Architecture

Our architecture mainly consists of CNN networks that can
be considered expensive for hardware implementation. While
we already minimized the architecture, looking at how the
network has no depth, the resource needed to build the network
still takes up a lot of computing resources, considering how
convolution and deconvolution operation is done mathemat-
ically. Implementing mathematical operation in a hardware
can be done either combinationally or sequentially. By nature,
Convolutional Neural Network has kernels as its trainable
properties [12]., and the process is done by multiplying its
kernel with the pooled-input matrix then adding all the results
before sliding to the next pooled-input.

Looking at this operation, it is very normal to think that
this can be implemented by taking the pooled window as
its input and multiplying it with its kernel. However, as the
input grows, either for the pooled size or the bit size, it will
take as much resource as the total of pool size times the bit
size of each number, making it a non-resource friendly to be

43

Input Vector

Destination Pixel

)

Fig. 2. Convolutional Neural Network [12].

implemented. This is where our novelty comes into action.
We built a network that utilizes the usage of Block RAM
to save space and reduce the need to use LUTRAM and FF
to store all the data needed, while maintaining the speed by
using shift-based operation for the multiplication. It works by
making the process of operation sequentially, by taking one
input each time, making it only needs to use logic-resources
to do one operation at a time. This type of operation makes the
network scalable, for both the input and the training parameter
as long as the BRAM needed is enough to save all the training
parameters and the output for each operation. The use of shift
operation is to reduce the need of a multiplier block that will
take up a lot of computing resources and reduce the time
needed to do the operation.

C. Process Development

Starting from training the VAE model with Tensorflow in
python, we extract the weights and biases from it. The weights
will be quantized first so the value can be derived from the
sum of the power of two. With that, the implementation in the
FPGA will only utilize shift and addition operations.

Biases

Weights

ShiftCNN l

Quantized Weights

|

Implement to FPGA

Fig. 3. Process Development.

III. IMPLEMENTATION AND ENGINEERING
CONSIDERATIONS

This project’s development is divided into two parts, which
is the training part and the FPGA implementation part. The
training part consists of building the network and training
the model that is fully done in python using Tensorflow-
Keras framework, so that the model can be used in the
FPGA implementation part for the inference process. For the
implementation part, it is developed fully using Verilog-HDL,
which is divided into a smaller component that can be used

The 28 th LSI Design Contest in Okinawa 2025

in the top level entity. We used fixed-point format for the
implementation, with the precision of 10 bits integer and 10
bits fraction, to see the resources utilization by making each
layer holding the same amount of bit-length for the operation
and not optimizing it.

A. Python Implementation

We train our model using Tensorflow with Adam optimizer.
The architecture we adopt for training is already explained
in the proposed design. After the training is complete, we
save the weights and biases in .npy format. After another
pre-processing, the saved weights and biases are then used
to perform VAE inference.

a) Model Architecture:

o Encoder
TABLE I
ENCODER LAYERS
Layer Input Shape | Output Shape
Conv2D (28, 28) (26, 26)
MaxPooling2D (26, 26) (13, 13)
Flatten (13, 13) (169)
Dense (100 neurons) (169) (100)
Dense (50 neurons) (100) (50)
[z mean] Dense (2 neurons) (50) 2)
[z logvar] Dense
(2 neurons) (0) @
[z sample] Sampling
(2 neurons) @&@ @
o Decoder
TABLE 11
DECODER LAYERS
Layer Input Shape | Output Shape
Dense (50 neurons) 2) (50)
Dense (100 neurons) (50) (100)
Reshape (100) (10, 10)
Conv2DTranspose (10, 10) (30, 30)
Conv2D (30, 30) (28, 28)

b) ShiftCNN Weights Format:
The saved weights in the .npy file will be quantized with
ShiftCNN and then converted to binary format and then saved
to .coe file. The first bit represents the sign of the weight: 1
indicates it has negative value and O indicates it has positive
value. The second bit represents the direction of the shift
operation: 1 indicates that the shift direction is right and 0
indicates that the shift direction is left. The remaining bits
represent the shift amount for the operand.
o Sign Bit: X_
X =1 — The weight has a negative value
X = 0 — The weight has a positive value
o Shift Direction Bit: _ X_
X =1 — Right shift
X =0 — Left shift
o Shift Amount Bit: _ _ XXXX
XXXX — Shift amount

X X XXXX
I—b Shift Amount

Shift
Direction Bit

Sign Bit

Fig. 4. ShiftCNN Weight Format.

B. FPGA Implementation

Our design is implemented using a PYNQ-Z1 FPGA that
can use Jupyter-notebook for the input and output flow that
is controlled by a FSM Controller. The way it sends data
from Jupyter-notebook to FPGA is done sequentially, making
it really fits with our proposed design.

Jupyter-Notebook

vt

10DMA R

Input Pixel a Output

28x28

Image

Conlroller
Fam

NS

Encoder » |Latent ,| Reparameter-

N » Decoder
Space ization

Fig. 5. FPGA implementation.

a) Convolution:

There are two modes of convolution that are being used in
this project, Convolution 2D - Valid a.k.a Convolution, and
Convolution 2D Transpose - Valid a.k.a Deconvolution. Those
functions are made to behave like tensorflow function which
has the same principle as how convolution operation usually
works.. It differs on the output size parts, with convolution will
reduce the size of input and deconvolution will increase the
size of input. The implementation for this module is done by
using FSM, which will save the input to its own BRAM, then
doing the address calculation needed for the input and kernel
for current index calculation. The multiplication operations
are done using Shift operator, with the format of the kernel-
weights that stated before.

Fig. 6. shows how convolution operation is implemented. It
works by calculating the address of operation one by one,
and then save it to the BRAM output everytime the kernel-
size calculation is already satisfied, with the output address
calculated previously. This way, we don’t need to go back and
forth to save and get the calculated data from BRAM output.
However, this method only applies for convolution operation,

The 28 th LSI Design Contest in Okinawa 2025

because for deconvolution, each calculated result needs to be
saved to BRAM output because it needs to get the result from
previous calculation from a specific address, so that it can
get the right results. Additionally, deconvolution operation has
a different boundary from convolution in the 2 outer loops,

which is input size.

Save input to BRAM

Init calculation of 4
loop in a loop indexes
for convolution
operation
|
¥
Calculate the address
needed for both input
and kemel

l

Shift the input by
kernel and sum it with
the previous result

Calculate the newest
Address for the inner
loop

he inner 2
Joop indexes exceed>
emel size?,

Calculate the newest
indexes for the outer
loop

f

Reset the inner two
loop indexes

True

¥

Save it to the output

the outer
loop indexes exceed
output size?

—False—<2

Fig. 6. Flowchart of Convolution Operation.

b) Matrix Multiplication:
Mathematically, matrix multiplication is done by multiplying
the rows of multiplier with cols of multiplicand, then summing
it for the value of that row x cols index. In verilog, we
implemented it with the same principle as the convolution
operation, by calculating the address of multiplier and multipli-
cand, multiplying the data using shift operation, then summing
all the results and saving it to the BRAM output with specific
address.

¢) ReLU (Rectified Linear Unit):
ReLU is an activation function that is used the most in our
network architecture. It results the same value as the input,
if and only if the input is greater or equal to zero. Other
than that, this function will result in zero. We implement
it sequentially by using an enable signal that will start the
comparing operation if it is 1. By implementing it sequentially,
we have access to reset, enable, and done signals that are being
used on the higher level module.

d) Look-Up Table (LUT):
Look-Up Table is one way to implement a function without

45

the need to do calculation. It works by quantizing the function
with resolution as the input size. We used LUT to implement
exponential function and sigmoid activation function, for the
calculation of reparameterization tricks that are being fed to
decoder parts, and the activation function of the last 2 layers
of decoder. The output for the exponential function has the
same amount of bits as the input, which will make the input
bound smaller than the actual input. For sigmoid function,
considering the output range only from O to 1, we used 11
bits for the output to lower the to save space of the LUT.
However, the output still has the same bit length as the input,
by concating 9 bit to the MSB of sigmoid output.

e) Full Network Implementation:
The full network is implemented using the previous basis func-
tion, that for each layer will have their own FSM controller
to control the operation flow of the basis function. From the
previous chapter, we quantized the weight so that FPGA only
need to do shift and addition operation, however we quantized
it with resolution of 2, so that for one layer, will has 2 weights
that after the shift operation, both results need to be added up
along with bias before being fed to the activation function. For
the reparameterization module, the randomness a.k.a epsilon
is calculated using python, then is fed to the network along
with the input pixel. All in all, the network will accept both
input pixel and epsilon, and use the exponential LUT module
that has been made before to calculate the input of the decoder
layer.
Fig. 7. presents an overview of the full network implementa-
tion from the encoder’s perspective. Notably, the decoder and
latent space share the same implementation as the encoder
shown in Fig. 7.

Encoder, ncoder
Input l Output
Full
Input: Encoder [4———Output:
Controller
Layer 1 Layer 2 Layer 3 Layer 4
CNN Maxpooling N Dense Dense
FSM FSM FSM FSM
Controller Controller Coniroller Controller
¥ y
Layer 1 Layer 2 Layer 3 Layer 4
Operation Operation Operation Operation

Fig. 7. General Overview of full network implementation.

f) AXI DMA and Jupyter-Notebook:
Xilinx-ZYNQ based FPGA uses IP core AXI DMA protocol to
connect the data processing module with the system memory.
AXI DMA can be controlled by an integrated Jupyter Note-

The 28 th LSI Design Contest in Okinawa 2025

Fig. 8. Hardware setup using PYNQ-Z1 FPGA Board.

book on PYNQ-Z1 which provides convenience in managing
the data, memory buffers and showing the received processed
data.

The data received by the processing module is a normalized
data in integer representation, with the following conversion
flow. For example the pixel data from an image being sent
is the number 255. This value then normalized by dividing it
by 255. Next, the normalized data is converted into a fixed-
point format with 10 bits for the integer part and 10 bits for
the fractional part. Finally, the data is converted back to its
decimal form, resulting in an input value of 1024.

IV. RESULTS AND ANALYSIS
A. Model Analysis of Shift CNN Architecture

We used the Tensorflow Keras MNIST dataset as a test data
set to evaluate our result. Three evaluation metrics are used
to test the Shift CNN models: Mean Squared Error (MSE),
Structural Similarity Index (SSIM), and Binary Cross Entropy
(BCE). The MSE value ranges from 0 to 1 (because the image
pixel value is normalized) indicating the error of one image
to the other. Meanwhile the SSIM value ranges from -1 to 1:
-1 indicates that one image is the exact inverse of the other, O
indicates that there is no similarity, and 1 indicates that images
are perfectly identical. BCE value ranges from 0 to infinite,
smaller BCE value means smaller error and zero means the
images are identical.

Below is the visualization of MSE, SSIM, and BCE value
distributions from input image compared to reconstructed
without shiftCNN, input image compared to reconstructed with
shiftCNN, and reconstructed without shiftCNN compared to
reconstructed with shiftCNN.

The result shows us that the average MSE of the recon-
structed image without using shiftCNN is around 0.0541,
meanwhile the average MSE of the reconstructed image using
shiftCNN is a little bigger than without using it around 0.0554.

MSEs test reconstructed MSES_test NN MSEs x NN

008 008 015 o
Value Value Value
SSIMs test ¢ SSIMs _test f NN SSIMs ¢ X NN

ol
00 01 02 03 04 05 00 o1 02 03 04 05 08 03 10
Vale value.

BCES test reconstructed BCES_test reconstructedShifttNN

Vale value

Fig. 9. (From top to bottom) MSE, SSIM, and BCE Histograms.

So as with the SSIM value, the average SSIM value without
using shiftCNN is around 0.3397, meanwhile the average
SSIM value of the reconstructed image using shiftCNN is
around 0.3311. As we can see, the MSE and SSIM value of the
reconstructed image with or without using shiftCNN only has
a slight difference. Moreover, the average MSE value between
the reconstructed image without shiftCNN and the recon-
structed image using shiftCNN is very small around 0.0016,
and the average SSIM value between the reconstructed image
without shiftCNN and the reconstructed image using shift CNN
is 0.9615. Hence, the result of the reconstructed image with or
without using shiftCNN doesn’t have a significant difference.

B. FPGA Design Verification

The design is verified by comparing the error of recon-
structed image from FPGA implementation result with python
Shift-CNN result. The error is calculated using MSE for the
verification process that can be seen in Table 5. Also, the
resource utilization and the performance metrics both can be
seen in Table 3 and Table 4. From resource utilization data,
we can see that the network only uses 7072 LUT and 6705
FF, which can be considered small considering how CNN
operation works. Also, this implementation doesn’t optimize
the bit width usage for each layer operation, making it more
resource-friendly if we fully optimized all the operation done
for each layer.

As shown in Table 5, both the FPGA implementation and
the Python implementation using Shift-CNN yield comparable
results in terms of the mean squared error (MSE) calcu-
lated from the reconstructed image. Considering the design
implementation, the execution time presented in the table
demonstrates sufficient efficiency for the inference phase with
a 28x28 pixel input.

CONCLUSION

The hardware implementation utilizing BRAM and shift
operations demonstrates excellent performance, as evidenced
by the execution time required for each operation and the

46

The 28 th LSI Design Contest in Okinawa 2025

TABLE I1I TABLE V
UTILIZATION COMPARISON FROM IMPLEMENTED DESIGN WITH PYTHON
Resource Utilization | Available | Utilization(%)
LUT 7072 53200 13.29 MSE Value FPGA
LUTRAM 157 17400 0.90 Value No Shift Shift Shift Execution
FF 6705 106400 6.30 CNN Python CNN Python CNN FPGA Time (s)
BRAM 97 140 69.29 0 0.0660 0.0726 0.0719 0.0020
DSP 44 220 20.00 1 0.0121 0.0129 0.0146 0.0022
BUFG 1 32 3.13 2 0.0855 0.0924 0.0924 0.0019
3 0.0701 0.0745 0.0788 0.0018
4 0.0534 0.0577 0.0583 0.0020
TABLE IV 5 0.0875 0.0896 0.0897 0.0021
PERFORMANCE METRICS 6 0.0767 0.0807 0.0794 0.0019
: 7 0.0336 0.0345 0.0345 0.0018
Clock Frequency | On - Chip Power Vg‘f;iil?%;ge 8 0.0751 0.0768 0.0769 0.0019
100 MHz 1.628 W 0.227 ns 9 0.0512 0.0528 0.0528 0.0021

strong similarity between the FPGA and Python implemen-
tation results, with average SSIM value of ShiftCNN and
conventional CNN are 0.3311 and 0.3397. Moreover, the shift
CNN maintains high accuracy even with small quantization,
with MSE for around 0.0554, while without using shift CNN
is around 0.0541. Additionally, by carefully optimizing the bit
width used in each layer operation, the architecture can be
further refined to reduce resource consumption, while without
optimizing it, the resources used already really small consid-
ering the use of convolution operation, which can be seen
in Table III. Lastly, the architecture still maintains its speed
considering how the process is implemented, with execution
time around 0.0019 to 0.0021 seconds.

ACKNOWLEDGMENT

We would like to express our sincere gratitude to Nana
Sutisna, S.T., M.T., Ph.D. for his invaluable support and
constructive feedback to this project.

REFERENCES

[1]1 A. Asesh, ”Variational Autoencoder Frameworks in Generative Al
Model,” 2023 24th International Arab Conference on Information Tech-
nology (ACIT), Ajman, United Arab Emirates. 2023. pp. 01-06, 2023.

47

[2]

[3]

[4]

[5]

[6

=

[7]

[8]

[9]

[10]

(11]

[12]

D. P Kingma and M. Welling, “Auto-Encoding Variational
Bayes,” arXiv preprint arXiv:1312.6114, 2013. [Online]. Available:
https://arxiv.org/abs/1312.6114v11. [Accessed: Jan. 28, 2025]

J. C. Porcello, “Scaling up deep learning for AI using fp-
gas,” 2024 IEEE Aerospace Conference, pp. 1-13, Mar. 2024.
doi:10.1109/aer058975.2024.10521423

Z. Que, M. Zhang, H. Fan, H. Li, C. Guo and W. Luk, "Low Latency
Variational Autoencoder on FPGAs,” in IEEE Journal on Emerging and
Selected Topics in Circuits and Systems, vol. 14, no. 2, pp. 323-333,
June 2024, doi: 10.1109/JETCAS.2024.3389660.

A. Vahdat and J. Kautz, “NVAE: A deep hierarchical variational au-
toencoder,” in Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp.
19667-19679

Govorkova, E., Puljak, E., Aarrestad, T. et al. Autoencoders on field-
programmable gate arrays for real-time, unsupervised new physics
detection at 40 MHz at the Large Hadron Collider. Nat Mach Intell
4, 154-161 (2022). https://doi.org/10.1038/s42256-022-00441-3

M. Isik, M. Oldland, and L. Zhou, ”An Energy-Efficient
Reconfigurable Autoencoder Implementation on FPGA,” arXiv
preprint arXiv:2301.07050, Jan. 2023. [Online]. Available:
https://arxiv.org/abs/2301.07050

D. Marculescu, D. Stamoulis, and E. Cai, “Hardware-
Aware Machine Learning: Modeling and Optimization,” arXiv
preprint arXiv:1809.05476, Sep. 2018. [Online]. Available:
https://arxiv.org/abs/1809.05476

X. Yang, S. Chaudhuri, L. Likforman, and L. Naviner, “Min-
ConvNets: A new class of multiplication-less Neural Networks,”
arXiv preprint arXiv:2101.09492, Jan. 2021. [Online]. Available:
https://arxiv.org/abs/2101.09492

Y. Ma, Q. Xu, and Z. Song, “Resource-Efficient Optimization
for FPGA-Based Convolution Accelerator,” *Electronics™®,
vol. 12, no. 20, p. 4333, Oct. 2023. [Online]. Available:
https://doi.org/10.3390/electronics 12204333

D. Gudovskiy, “ShiftCNN: Generalized Low-Precision Architecture
for Inference of Convolutional Neural Networks,” arXiv
preprint arXiv:1706.02393, Jun. 2017. [Online]. Available:
https://arxiv.org/abs/1706.02393. [Accessed: Jan. 28, 2025]

K. O’Shea and R. Nash, “An Introduction to Convolutional Neural
Networks,” Dec. 2015.

The 28 th LSI Design Contest in Okinawa 2025

Design and Implementation of Point Cloud Data Generation Circuit
Using Variational Autoencoder

Noritomo Okamoto, Shun Matsumoto, Kazuma Mori, Itsuki Karube
Department of Electrical Engineering, Faculty of Engineering, Chiba University, Japan
Graduate school of Engineering, Chiba University, Japan
Email: 21t1061h@student.gs.chiba-u.jp

Abstract: We designed and implemented a circuit for a
point cloud generator using VAE. The system can
generate point cloud data 2.5 times faster than the CPU.
In addition, we have developed an optical
reconstruction system for the created point cloud data
through holography.

Keywords—Variational Autoencoder, Point Cloud,
FPGA, Pipelining, Holography

1. Introduction

Point cloud data is three-dimensional (3D) and used in
various fields such as architecture, autonomous driving,
XR contents, etc. However, making point cloud data
requires modeling and surveying techniques, which are
time-consuming and labor-intensive. Therefore, this
project developed a system for generating new point
clouds at high speed.

2. Point Cloud and Holography

Point cloud data is a data format that represents an
object as a set of points. Each point is represented by 3D
spatial coordinates (x,y, z) and has 3D information.

There are a wide range of applications for point cloud
data, and this article describes one example of its use in
holography.

Holographic 3D display is a 3D imaging technology
that provides the depth and parallax information of
scene without using customized glasses.

A computer-generated hologram (CGH) is created
from point cloud data and displayed on an optical
element. By irradiating the CGH with a laser, the 3D
image floating in the air can be projected.

Reconstructed Half
3D Image Mirror CGH
L
- 4
{: E / PC — FPGA
0
Beam
Expander
Laser

Fig. 2.1. Image Reconstruction from CGH

The objective of this project is to generate point clouds
that interpolate transitions between different point cloud
data via VAE. As an example, we developed a system in

48

which VAE learns point clouds of tadpoles and frogs,
estimates the growth process of frogs by controlling
latent variables, and outputs these point clouds.

We used Blender to create training data (Fig. 2.2.), the
number of training data was increased by randomly
scaling and rotating the data in python code.

Fig. 2.2. Point Cloud on Blender

3. Model

We are using VAE to do the generation. The full
structure of our model is shown in Fig. 3.1. The details
for our model will be described in the following
subsections.

Input data sampled output data

latent data
decoder f

Fig. 3.1. Structure of VAE

3.1. Encoder
We will first introduce the encoders we used in our
model. The structure is shown in Fig. 3.2.

encoder

N(O, D)

128 channel
1x2048

3 channel

64 channel
1x2048

12048 1x128

Fully
connected

Reparameterization
Trick

Conv Conv Max-pool

4 !
BatchNorm BatchNorm
RE’LU

Fig. 3.2. Structure of Encoder

We used 1D convolutional networks with filter size 1,
which is equivalent to a fully connected layer in 2D.
Then we use a fully connected layer to get the mean and
variance for the latent Gaussian distribution.

1
RelU

The 28 th LSI Design Contest in Okinawa 2025

3.2. Sampling

Let 4 and o denote the output from the encoder
with input x, then we sample z from q(z|x) =
N (u,0) and pass it to the decoder.

3.3. Decoder

For the decoder, it takes the sampled latent variable z
as input and the output X is a 2,048 X 3point cloud
matrix. In this project, we use a fully connected layer.

3.4. Loss Function
Assume we have N data points x(D, ...x(™) the loss
function £ is defined to be:

£0,6:70) =, ,100)[08po 1)

D (4(2x®) I pe () (3D

The first term is the reconstruction loss and the second
term is the latent loss. In this system, we use chamfer
distance as reconstruction loss and KL divergence as
latent loss.

3.4.1. Chamfer Distance
The Chamfer distance between two sets X,Y of point
clouds is defined to be:

coX,¥) =) minllx - yl3
yEY
x€X
: _lI2
+ minllx =yl
yEY

For each point, the algorithm of Chamfer distance

finds the nearest neighbor in the other set and sums the
squared distances up.

3.4.2. KL Divergence

KL divergence is a measure of the difference between
two probability distributions P and Q. In this system,
p(z) is the standard Gaussian, ¢q(z|x) is the
distribution generated by the program, and
Dk (q(z|x) Il p(2)), the difference between them, is
the loss function.

In this model both p(z) and q(z|x) are Gaussian;
in this case, the resulting estimator for this model and

3.2)

datapoint x@ is:
=Dy (q(z]x) I p(2))

Zdim

1
=2) (U +log@)? - W)* = (@) (33)
i=1

4. Circuit Structure and Operation

For implementation, we used the Zynq UltraScale+
MPSoC ZCU104[1] provided by Xilinx. Table 4.1
shows the specifications and development environment
of the PL (Programmable Logic) part. In addition to the
PL part, which rewrites circuits in HDL, this evaluation
board has a PS (Processing System) part, which has an
ARM CPU core. Table 4.2. shows the specifications and
development environment. In this design, the Python

49

library associated with PYNQ (Python Productivity for
Zynq)[2] is wused for FPGA rewriting and
communication between the CPU and FPGA.
Table 4.1. PL Part Specification and
Development Environment

Logic Cell 504,000

FF (Flip-Flop) 460,800

LUT (Look Up Table) 230,400
Block RAM 11 [Mb]

DSP Slice 1,728
Development Vivado 2024.1

Table 4.2. PS Part Specification and
Development Environment

CPU ARM Cortex-A53

Memory 2.0 [GB]

0S PyngLinux, based on
Ubuntu 22.04

Compiler g++11.2.0

Language Python version:3.10.4

In this design, among the neural network training and
point cloud generation, the circuit for point cloud
generation is implemented in FPGA. The input values,
weights, and bias values are obtained by training with
an emulator.

The flow of the entire system is as follows.

1. The latent variable data is sent from the PS part to the
PL part.

2. The start computation signal is sent from the PS part
to the PL part.

3. The PL part receives a start computation signal and
begin computation.

4. The PS part receives a signal from the PL part to end
the computation.

5. The PS part sends a signal to receive the output value.

Fig. 4.1. shows an overall view of the configured
circuit. The circuit is divided into two parts. AXI
(Advanced eXtensible Interface) communication, and
the calculation circuit, which controls data and performs
decoder operations.

4.1. AXI Communication Circuit

For the communication of this system, we used the
AXI4-Lite standard. Table 4.3. shows the addresses and
control signals of AXI4-Lite.

Table 4.3. AXI4-Lite Addresses and Control Signals

Address Control Signals

<00 Reset Signal (lbit) ' '
Start Computation Signal (1bit)

x04 End Computation Signal (1bit)

x08 Send Data to FIFO A (32bit)

x0C Receive Data from FIFO B (32bit)

The 28 th LSI Design Contest in Okinawa 2025

FPGA board
PS Part PL Part
AXI_LITE
AXI_WDATA WDATA INPUT_DATA
L 32,/ 32, Input 32,
Latent Variabl 7 FIFO A 7 Data Control 7
START L} {1 END grppy
1/
AXI_AWADDR ~
“// END
Input/Output State Machine—7~ Decoder
Control Signal Bl /
32, N STATE
/ 4
7
START L} _{'1 END
AXI_RDATA RDATA BUUHDY LN
24,576
3D Coordinate 32/ FIFO B 32/ Output Vi
Data 7 / Data Control || 7/
Fig. 4.1. Overall View of the Configured Circuit
INPUT_DATA
7 CONCATENATION_RESULT
Weight £
Multiplication 7
COUNTER
11bit &
next Counter 7
BIAS DELAYED_BIAS
63 63
Bias Delay ™\
ROM 7 Circuit —
OUTPUT_DATA EHIFT_RESULT ADD_BIAS_RESULT
24,576
shift Bit
@ Register 7 Selector 7
next
Fig. 4.2. View of the State Machine Fig. 4.3. View of the Decoder Circuit
|
]
3 Parallel Lines
INPUT_DATA
512 |
/ Ir ADD_RESULT CONCATENATION_
21 RESULT
MULTIPLE_RESULT /) 63
12 f Concatenation ,
COUNTER Multiplier + i 4 Circuit 7
11 H WEIGHT
| Weight 51,2
ROM 7

Fig. 4.4. View of the Weight Multiplication Circuit

50

The 28 th LSI Design Contest in Okinawa 2025

In this system, the latent variables are 32-dimensional,
and each dimension has 16 bits. Therefore, two 16-bit
signals are connected and converted into a signal 32-bit
signal in the PS part. FIFO A, which holds the input
values to the calculation circuit, has a bit width of 32
bits and a bit depth of 16, and FIFO B, which holds the
output values from the calculation circuit, has a bit
width of 32 bits and a bit depth of 3,072 (=2,048 points
x 3 x 16 bits + 32)the final output value is 16 bits per
dimension, the signal received from the PL part is
divided in the PS part.

4.2. Calculation Circuit

The calculation circuit consists of four circuits: "Input
Data Control", "Output Data Control", "State Machine",
and "Decoder".

In "Input Data Control", the input data are combined
because the decoder cannot perform operations unless
all 512 (=32 x 16) bits of data are available.

In "Output Data Control", the 24,576-bit data which
output from the decoder circuit is divided into 32 bits to
enable data communication between PL and PS part.

In "State Machine", "Decoder" and "Output Data
Control" are divided into four times (to reduce the
number of wires. The details will be explained in §5.1),
and it is responsible for managing their states.

In “Decoder Circuit”, it reconstructs the input 32-
dimensional latent variables into a 6,144-dimensional
output layer of 2,048 3D spatial coordinates (x,y,z).
Fig. 4.3. shows view of the Decoder Circuit. The
Decoder Circuit receives 512 bits of data, and it is
multiplied with the corresponding weights data in the
Weight Multiplication Circuit. The weight data used in
this process is extracted from the Weights ROM. The
sum of the multiplication results of 32 dimensions is
calculated and output from the Weight Multiplication
Circuit. The output data from the Weight Multiplication
Circuit is added to the corresponding bias data. As with
the weights data, the bias data is extracted from the
Weights ROM and delayed matching the timing of
addition. The data is concatenated in the Shift Register
Circuit and output as 24,576-bit OUTPUT DATA.
24,576 bits is the 3D data for 512 points (512 points x 3
dimensions X 16 bits). By performing the above process
4 times, the output layer of 6,144 dimensions, which is

the 3-dimensional data for 2,048 points, is reconstructed.

4.2.1. Weight Multiplication Circuit

This section describes Weight Multiple Circuit in
detail. The Weight Multiplication Circuit performs
multiplication and addition of the input 32-dimensional
data and the corresponding weights. Fig.4.4. shows the
view of the Weight Multiplication Circuit. The
Multiplier Circuit multiplies the input 32-dimensional
data with the corresponding weights. The weight data is

51

retrieved from ROM. The weight data stored in one
address of the weight ROM is 512 bits of data for 32
dimensions with 16 bits per dimension. The input data
and weight data are multiplied by 16 bits, resulting in a
32-bit multiplication result, of which the appropriate 16
bits are selected for the multiplication result in
consideration of the addition process. The result of the
multiplication of 32 dimensions is concatenated and
output as 512 bits. Adder Decoder Circuit calculates the
sum of the 32-dimensional data output from the
Multiplier Circuit. Since it adds 32 times, a maximum
of 5 overflows occurs (32 = 2%). To prevent overflow,
the calculation is performed in 21 bits by inserting the
upper 5 bits. The above processes are performed in three
parallel operations. The three 21-bit data are
concatenated in a Concatenation Circuit and output in
63 bits.

5. Design Innovation
5.1. Reducing the Number of Wires

In this design, input is 512 (=32 dimensions x 16 bits)
bits, and the output is 98,304 (=2,048 points x 3 x 16

bits) bits. The neural network is shown in Fig. 5.1.
by

\“Oo output,
Q- autpui;

O- outpute 143
O- ﬂutputﬁ‘lﬂ

Fig. 5.1. Neural Network of Decoder Circuit

This circuit could not be implemented on the FPGA
board due to the insufficient number of wires. Therefore,
instead of obtaining all output values at once, we
changed the specification to reduce the number of
output wires by dividing the operation into multiple
times. The neural network shown in Fig. 5.1. can be

represented by the matrix operation shown in Fig. 5.2.
512

X Wy

512bit 98,304 bit

98,304 w sl z y (98,304

Fig. 5.2. Diagram of Matrix Operations in the
Decoder Circuit

Here, we divide the matrix operation into 4 parts as
shown in Fig. 5.3.

(1)

(2)
-198,304
(3)
(4

Fig. 5.3. Diagram of Fig. 5.2. Divided into 4 Parts

The 28 th LSI Design Contest in Okinawa 2025

With this division, we can see that the output of (1) is
obtained from the overall input value, the weights of (1),
and the bias of (1). Therefore, to obtain the output of (1),
we can design a circuit to compute the neural network
shown in Fig. 5.4.

by

\"O» output,
Q output,

®
@ O’ oULPUty gag
O‘ outputy 536

Fig. 5.4. Neural Network to Obtain (1) in Fig. 5.3.

By constructing the circuit that performs the
calculation shown in Fig. 5.4. and updating the values
of weights and biases, we were able to reduce the output
wires to a quarter of the original circuit configuration,
enabling implementation on the FPGA board.

X wy

512bit 24,576bit

5.2. Pipelining and Parallelization

In this design, the two operations, multiplication and
addition, were parallelized, and the entire Decoder
circuit was pipelined.

acLK

Al
r N

INPUT_
DATA 16
512 32 16

MULTIPLE_
RESULT

Extract 16 512

bits from
the upper
bits

WEIGHT
512 32 16
16 —f—.
16
32 16
s S

Fig. 5.5. View of the Multiplier Circuit

BIt
Selecter

Fig. 5.5. shows the parallelization of the multiplier
circuit. To calculate the one-dimensional data of the
output layer, it is necessary to multiply the 32-
dimensional data of latent variable data by weights and
add biases. 32 multiplications are performed in parallel
in one clock cycle by storing the weight data for 32
dimensions at one address in the Weight ROM.

1CLK SCLK

MULTIPLE_
RESULT
512

Extract 16 ADD_
bits from RESULT
upper bits 1 21

& i

insert
upper 5 blts
16
6
16

16

Fig. 5.6. View of the Adder Circuit

Fig. 5.6. shows the parallelization of the Adder
Decoder Circuit. When all 32 multiplication results are

52

added together, not added in sequence but instead are
calculated in a tournament fashion. This makes it
possible to perform the additional process in 5 clocks.

Furthermore, by processing the Multiplier Circuit and
Adder Decoder Circuit in three parallel, it is possible to
calculate the three dimensions of the output layer at
once. Therefore, the calculation of 1,536 (=2,048 points
x 3 dimensions + 4) dimensions can be performed in
512 processes instead of 1,536 processes. Another
advantage of the three parallel processing is that the
6,144-dimensional data in the output layer are the x-
coordinate, y-coordinate, and z-coordinate of the first
point of the point cloud data, starting from the first
dimension, making it possible to obtain the three-
dimensional coordinate data for one point in one
calculation time.

| Adder | Bias | t
| Adder [Bias |
[Adder | Bias
[Adder | Bias |

[Multiplier
| Multiplier
I Multiplier
[Multiplier

[Multiplier [Adder [Bias

Fig. 5.7. Pipeline for Decoder

Fig. 5.7. shows how the entire Decoder Circuit is
pipelined. The calculation required 17 clocks per 3
dimensions, and the calculation of the output layer of
1,536 dimensions required (1,536 + 3) x 17 = 8,704
clocks, but by making the entire Decoder Circuit
pipeline-processable, processing can be done in 17 +
(1,536 = 3) = 529 clocks.

6. Evaluation
6.1. Resource Usage

Table 6.1. shows the resource utilization and
maximum frequency of the designed circuit. Note that
Xilinx’s Vivado2024.1. was used for logic synthesis and
placement and routing.

Table 6.1. Resources and Maximum Frequency

Resources Utilization Utilization [%]
LUT 12,347 5.36
LUTRAM 118 0.12

FF 56,495 12.26

BRAM 113 36.22

DSP 96 5.56

BUFG 4 0.74
Maximum

Frequency [MHZz] 140.04

6.2. Performance Comparison with CPU

We compare the results of computation time on an
emulator running on a CPU with those on an FPGA.
Table 6.2. shows the execution environment of the
emulator. The emulator performs calculations in
floating-point mode.

The 28 th LSI Design Contest in Okinawa 2025

Table 6.2. Emulator Execution Environment

CPU Intel Core 19-11900K 3.50GHz
Memory 64.0 [GB]

(ON Windows 10 Enterprise 64bit
Language Python version:3.12.2

Table 6.3. shows the computation times of 1, 10 and
100 calculations performed by CPU and FPGA, where
the process from the input of 32-dimensional latent
variables to the output of 2,048 objects is 1 time. The
computation time is the average of five measurements.

Table 6.3. CPU and FPGA Computation Time

Times CPU [ms] FPGA [ms]
1 67.9 25.8

10 645 254

100 6,327 2,540

Table 6.3. shows that the FPGA can compute about 2.5
times faster than the CPU. If we try to generate object
points in real time under the present conditions, the
frame rate is about 15fps (frame per seconds) for the
CPU, while it is about 391ps for the FPGA. While 15fps
makes the motion seem unnatural and slow, 39fps is
smooth and practical.

7. Result

7.1. Generated Point Cloud Data

Fig. 7.1. shows the point cloud data obtained by
inputting latent variables into the designed circuit and
plotting them in a 3D coordinate system. The point
cloud data in Fig. 7.1. (b), (¢), and (d) are obtained latent
variables by dividing the latent variables of a tadpole
and an adult frog into two groups.

Fig. 7.1. (b), (¢), and (d) show that the point cloud data
interpolating the growth process from tadpoles to adult
frogs can be generated.

7.2. Holographic Reconstruction with Generated data
We generated a CGH using the point cloud output from
the designed circuit and conducted optical experiments.

10
Tas

B

Lo
i
#
f

‘

e

2

2
i
3
e
Tdﬂ
5

f
|

=

EX

&

1
2
1

VLR VAL e
o 5

s

»
o Jus

00 05 L0 L5 20 25 30 35 48

(b)

00 05 Lo L5 28 25 30

(c)

Fig. 7.2. shows the reconstruction 3D image obtained
from the optical experiment. In this way, the point cloud
data can be applied to holography.

8. Conclusion

As an application of VAE, we focused on “point cloud”
and designed and implemented a point cloud data
generation circuit that complements two point clouds.
In designing the circuit, we considered how to process a
huge amount of output data within a given circuit
resource, and as a result, we were able to realize the
desired system by employing a method of dividing
outputs using a state machine. Furthermore, by
implementing parallelization and pipelining in the
decoder circuit, we were able to achieve a speedup of
about 2.5 times faster than that of the CPU.

In the future, we would like to make further
improvements aiming at generating reconstructed
images with higher accuracy. In the circuit design, since
the results showed that there is enough margin in the
number of resources used, such as DSP, we aim to
further increase the speed by introducing more
parallelization of the operations that perform
multiplication. In addition, to focus on the application
to holography, by designing a circuit to create CGH
from point cloud data, we want to create a circuit that
works from point cloud generation to CGH creation in
a single FPGA board.

Appendix
Transition from Tadpole to Frog: https:/sites.googl
e.com/view/ito-shimobaba-lab/conceal/lsi2025 frog

Reference and Links

[1] Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit
https://www.xilinx.com/products/boards-and-
kits/zcul04.html

[2] PYNQ|Python Productivity to AMD Adaptive
Coompute platforms http://www.pyng.io/

By

UraiF e

i

T

35 40 0005 10 15 20 25 30 35 20

(d)

Fig. 7.1. Obtained Point Cloud Data

(b)

(c)

53

(d
Fig. 7.2. 3D Image Obtained from the Optical Experiment

https://sites.google.com/view/ito-shimobaba-lab/conceal/lsi2025_frog
https://sites.google.com/view/ito-shimobaba-lab/conceal/lsi2025_frog
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
http://www.pynq.io/

The 28 th LSI Design Contest in Okinawa 2025

SVAE Implementation on FPGA for Arrhythmia
Classification

Rafael Aditya Cahyo W, Ahmad Hafidz Aliim, Maritza Humaira
Electrical Engineering
School of Electrical Engineering and Informatics
Bandung, Indonesia
13221066 @std.stei.itb.ac.id, 13221055@std.stei.itb.ac.id, 13221026 @std.stei.itb.ac.id

Abstract—This research presents an implementation of a
Stacked Variational Autoencoder (SVAE) on FPGA for arrhyth-
mia classification using ECG signals. The design utilizes the
PYNQ-Z1 board featuring a Xilinx Zynq-7000 SoC, employ-
ing a custom 16-bit fixed-point data format with 1-bit sign,
4-bit exponent, and 11-bit mantissa. The SVAE architecture
consists of multiple stacked encoders and decoders, processing 10-
dimensional input data through progressive dimensional trans-
formations to a 1-dimensional latent space, ultimately providing
binary classification for normal and arrhythmic patterns. The
implementation achieves a maximum frequency of 100 MHz with
40 clock cycles per operation, resulting in an execution time of 400
ns and a throughput of 80 Mbps. Hardware utilization remains
efficient at 4.46% LUTs, 1.88% Flip-Flops, and 8.64% DSPs.
Testing on the MIT-BIH Arrhythmia Database demonstrated a
classification accuracy of 91.5% across 200 samples, establishing
the viability of FPGA-based SVAE implementation for real-time
arrhythmia detection.

Keywords—PYNQ-Z1, Arrythmia Classification, SVAE, hard-
ware acceleration

I. INTRODUCTION

Heart rhythm irregularities, known as cardiac arrhythmias,
represent a serious medical problem that requires quick iden-
tification to ensure appropriate medical intervention. The pri-
mary tool for identifying these conditions is the electrocar-
diogram (ECG), which captures electrical signals from the
heart. Although conventional ECG analysis typically relies on
software systems, these approaches often struggle with speed
limitations and challenges in real-time monitoring. Field Pro-
grammable Gate Arrays (FPGAs) have emerged as a promising
hardware-based alternative, offering advantages through their
ability to process multiple tasks simultaneously and adapt to
different configurations. This potential has been demonstrated
through practical applications, such as a successful FPGA
implementation that extracts key features from ECG signals
using time-domain analysis techniques [1]], highlighting the
practical benefits of hardware-based approaches in heart mon-
itoring systems.

In recent years, machine learning techniques, especially arti-
ficial neural networks (ANNs), have been increasingly applied
to ECG signal classification tasks. The parallel structure of
ANNSs aligns well with FPGA architectures, enabling efficient
real-time processing. A study implemented a fully parallel
ANN-based arrhythmia classifier on a single-chip FPGA,

achieving an accuracy of 97.66% in classifying arrhythmias
(2]

Building upon these successes with basic neural networks,
researchers have begun exploring more sophisticated deep
learning architectures for ECG analysis. Variational Autoen-
coders (VAEs), a class of generative models, have shown
particular promise in learning latent representations of com-
plex data distributions. The Stacked Variational Autoencoder
(SVAE) extends this concept by incorporating stochastic pro-
cesses, enhancing the model’s ability to capture temporal
dynamics inherent in sequential data like ECG signals. Given
the demonstrated success of implementing neural networks
on FPGAs, extending this hardware acceleration approach
to SVAEs for arrhythmia classification could leverage the
strengths of both advanced machine learning models and
high-performance hardware architectures, potentially leading
to more accurate and efficient diagnostic tools.

II. RELATED WORKS

Previous research has explored deep learning techniques for
the classification of arrhythmias, emphasizing the effectiveness
of residual and variational autoencoder (VAE) architectures.
Lu et al. [3] investigated the use of deep networks to annotate
arrhythmias, employing feature extraction through residual
layers and latent representation through VAE, followed by
classification with a bidirectional recurrent neural network.
They used ECG data from the VFDB and MIT Normal Sinus
Rhythm databases, which were preprocessed by resampling,
removal of baseline drift, and conversion to 2D grayscale
images. Similarly, Belen et al. [4] proposed an uncertainty
estimation framework for the detection of atrial fibrillation
using VAE to improve the reliability of classification. Their
method involved residual feature extraction, transposed con-
volution for decoding, and confidence evaluation through
repeated sampling of network outputs. These works highlight
the potential of combining residual networks and VAEs in
achieving a robust arrhythmia classification.

In another work, Fahad et al. [S]] developed a deep learning
model, Convolutional Neural Networks (CNN), to identify
arrhythmias using ECG signals. Since the older arrhythmia
detection methods are not completely accurate and reliable, the
testified CNN model can successfully detect and distinguish
arrhythmias with a testing accuracy of 98.3% and a validation

The 28 th LSI Design Contest in Okinawa 2025

accuracy of 83.7%, respectively. Zhong and Sun [6] proposed
a personalized arrhythmia detection system PerDetect based
on an unsupervised autoencoder. The system trains a separate
BiLSTM-based autoencoder BiAE for each patient for arrhyth-
mia detection. BiAE only needs to use the patient’s normal
heartbeat for training. Experiments show that the system only
needs a small amount of ECG training data (within five
minutes) to achieve good performance and the accuracy of
their method on MIT-BIH Arrhythmia Database is 97%.

Nithya and Rani [7] have investigated the application of
a Stacked Variational Autoencoder (SVAE) for the automatic
diagnosis of arrhythmia from ECG signals. Furthermore, the
augmented data set is used for training the model, to resolve
the imbalance in the classes. The proposed model reached
an overall accuracy of 98.96% and sensitivity of 97.32%.
SVAE classified twelve classes of cardiac arrhythmia including
normal sinus rhythm.

III. PROPOSED DESIGN
A. Dataset

The model in this project is trained using the MIT-BIH
Arrhythmia Database, a widely recognized benchmark for ar-
rhythmia classification research [8]]. The database contains 48
half-hour excerpts of two-channel ambulatory ECG recordings
from 47 subjects, collected by the BIH Arrhythmia Laboratory
between 1975 and 1979. The recordings were sampled at 360
Hz with 11-bit resolution, providing high-fidelity ECG signals
suitable for detailed analysis. Each record is annotated by
two or more cardiologists, resulting in approximately 110,000
beat annotations that serve as a reliable reference for model
training.

This database was chosen for its extensive and diverse
representation of arrhythmias, including clinically significant
but rare cases that are crucial for training robust classifica-
tion models. By providing a well-annotated and high-quality
dataset, the MIT-BIH Arrhythmia Database enables the devel-
opment of deep learning models capable of handling complex
ECG patterns and ensuring accurate arrhythmia detection in
real-world scenarios.

B. Data Preparation

The data preparation process for the arrhythmia classifica-
tion model is using Jupyter Notebook computing program [9].
It involves four key stages: preliminaries, data visualization,
preprocessing, and data balancing. In the preliminaries, es-
sential libraries such as wfdb for ECG signal processing and
imbalanced-learn for handling class imbalance were installed.
Supporting tools like numpy, tensorflow, and matplotlib were
also imported to enable numerical computations, model build-
ing, and data visualization.

Data visualization followed, where ECG signals were plot-
ted to examine their structure and identify significant features.
For instance, an ECG record was loaded, and 3,000 samples
were visualized to understand the waveform’s characteristics
and identify R-peaks, as shown in Fig. |Il This step provided

55

R
PR
+——>
S
e {7
Q
48 ol

Fig. 1. ECG Measures Signal

insights into the dataset’s composition and guided subsequent
preprocessing tasks.

In data preprocessing, annotations from the ECG records
were extracted to locate R-peaks and classify beats as normal
or arrhythmic. R-R intervals were calculated and normalized,
then segmented into windows of 10 beats. Each segment was
labeled as normal (if all beats were normal) or arrhythmic (if
at least two ventricular beats were present). This segmentation
approach ensured the model received structured and meaning-
ful input data.

Finally, data balancing addressed the inherent class im-
balance, as normal beats outnumber arrhythmic ones. Using
SMOTE (Synthetic Minority Oversampling Technique), addi-
tional synthetic samples of the minority class were generated,
effectively equalizing the class distribution. This step improved
the model’s ability to learn from both normal and arrhythmic
cases, enhancing its predictive accuracy. These meticulous
preparations laid the groundwork for an effective arrhythmia
classification model.

C. Data Type

In the proposed design, a custom data type was designed
to balance precision and hardware efficiency, consisting of a
1-bit sign, a 4-bit exponent, and an 11-bit mantissa. This con-
figuration is a tailored floating-point representation optimized
for the specific requirements of the system.

The primary reason for adopting this custom data type is
to improve computational accuracy without incurring exces-
sive hardware overhead. The 11-bit mantissa provides suffi-
cient precision to represent the fine-grained variations in the
processed data, which is critical for tasks like arrhythmia
classification that rely on subtle distinctions in ECG signals.
Meanwhile, the 4-bit exponent is adequate because the range
of values in the data is relatively limited, and the application
does not require handling extremely large or small numbers.
This keeps the hardware resources efficient, as fewer bits for
the exponent reduce complexity while still ensuring the data

The 28 th LSI Design Contest in Okinawa 2025

range is fully covered. Additionally, the 1-bit sign allows for
representation of both positive and negative values, which
is essential for capturing the full spectrum of ECG signal
amplitudes.

D. Model

To perform identification, the proposed design utilizes a
Stacked Variational Autoencoder (SVAE). This type of Au-
toencoder is a Deep Generative Model used for learning
latent representations, featuring multiple stacked encoders. The
architecture of the implemented SVAE is shown in Fig.

In the proposed SVAE model, different activation functions
are used at various stages to enhance learning and stability.
ReLU is used in the first and third encoder layers, where the
representation size is reduced, promoting sparsity and efficient
representation learning by setting negative values to zero,
which helps filter out less significant features. These layers are
described by Eq.[T] Meanwhile, Softplus is used to the variance
in second encoder (latent space), to ensure numerical stability
by preventing negative values while maintaining sensitivity to
small variations. This layer is described by Eq.

y1 = ReLU(W1x + by) (D
Yo = Softplus(v/oi2 x €;) 2
With
W = Weight
b = Bias

y = Encoder Output
o = Variance

¢ = Random variable

The proposed Stacked Variational Autoencoder (SVAE)
architecture employs a series of stacked encoders and decoders
to effectively process and classify arrhythmia patterns. The
encoder section consists of multiple dense layers that pro-
gressively transform the 10-dimensional input data through
a sequence of dimensional transformations, ultimately com-
pressing it into a 1-dimensional latent space representation.
This progressive compression through stacked layers, rather
than direct dimensional reduction, is crucial for preserving
important feature information and preventing underfitting. The
latent space serves as a compact yet informative representation
where different arrhythmia classes can be effectively separated
into distinct regions. Following the latent space, the decoder
section mirrors this structure in reverse, gradually expanding
the dimensionality through dense layers until reaching the final
2-dimensional output layer for classification purposes.

This architecture culminates in a two-dimensional output
layer that functions as a confidence-based classifier. This
output provides probability scores indicating the likelihood of
whether the analyzed heartbeat belongs to either the normal
or arrhythmic category. The relative magnitude of these output
values serves as a confidence measure - a significantly higher

56

value in one output node compared to the other strongly
indicates the classification of the heartbeat pattern. This prob-
abilistic approach allows the model to not only classify the
heartbeats but also quantify the confidence level of its clas-
sification decision, providing valuable diagnostic information
for clinical interpretation.

E. Hardware Implementation

The hardware implementation of a Stacked Variational
Autoencoder (SVAE) for arrhythmia classification utilized the
PYNQ-Z1 board. The PYNQ-Z1 is a development platform
designed around the Xilinx Zyng-7000 SoC, which integrates
a dual-core ARM Cortex-A9 processor with programmable
logic based on the Artix-7 FPGA architecture. This integration
allows for efficient hardware-software co-design and execution
of computationally intensive tasks like deep learning model
inference.

The PYNQ-Z1 provides 13,300 logic slices, 220 DSP slices
for high-speed arithmetic operations, and 630 KB of block
RAM for efficient data handling. Its 512 MB DDR3 memory
operates with a 16-bit bus at 525 MHz, ensuring sufficient
bandwidth for managing large datasets. Additionally, the board
is equipped with multiple I/O features, such as HDMI, Ether-
net, and USB, enabling real-time data streaming and external
device connectivity [10].

A key feature of the PYNQ-Z1 is its support for the PYNQ
framework, which simplifies programming by enabling the use
of Python for hardware control and interaction. This makes it
an accessible platform for deploying advanced machine learn-
ing models while leveraging its robust hardware capabilities.
The board’s energy-efficient design, coupled with its ability to
handle parallel processing tasks in the FPGA fabric, makes it
highly suitable for biomedical applications, including real-time
arrhythmia detection systems.

IV. IMPLEMENTATION
A. Implementation Steps

The FPGA implementation of the SVAE design for arrhyth-
mia classification was conducted using the AXI Lite interface,
with Vivado serving as the primary tool for hardware genera-
tion. The implementation process involved generating essential
files, including Hardware Handoff File (.hwh), Tool Com-
mand Language Script (.tcl), and Bitstream File (.bit),
which were subsequently deployed to the FPGA board via a
wireless local area network. The design was further integrated
and tested within a Jupyter Notebook environment. To ensure
compatibility with the fixed-point architecture, a fixed-point
translator was incorporated into the source code, along with
prepared test datasets derived from the data preprocessing
stage. This methodology ensured a seamless transition from
design to deployment, facilitating efficient validation of the
proposed architecture.

B. Synthesis Result

From the synthesis performed in Vivado using the PYNQ-
Z1 board, we obtained utilization results for LUT, Flip Flop,
and DSP as shown in Table [l

The 28 th LSI Design Contest in Okinawa 2025

6 6
10 1 2

S —> —>» U >
Input 3 Output
Layer 5 —> 1 —> Layer

—>

—>
> —>» —>» 0
—>
— } | — — | { —
Encoder Encoder ;?::; Decoder Encoder
Fig. 2. Architecture of Stacked-VAE
TABLE 1 TABLE II

SYNTHESIS RESOURCES RESULT

Parameters | Used | Utilization
LUT 2375 4.46%
FF 2001 1.88%
DSP 19 8.64%

Performance measurements of the design were conducted.
The synthesis results show that the design has a maximum
frequency of 100 MHz. The number of clock cycles required
was calculated for each progress step, resulting in a total of
40 clock cycles as shown in Table [lI} The value of maximum
frequency 100 MHz is obtained by assigning the value of clock
cycle period in the constraint file (. xdc). This process goes
through several “trials and errors” to acquire the least value
of period. From these two data points, execution time and
throughput can be calculated using Eq. [3] and Eq. 4]

Fxecution Time = m 3)
Throughput = #bits 4)

FEzxecution Time

As previously discussed, the output of this design consists of
two confidence values with a 16-bit fixed-point format, making
the total output size 32-bit. The performance results obtained
are presented in Table [[TI}

C. Implementation on FPGA

The implementation on the FPGA uses a Jupyter Notebook.
This notebook includes importing the overlay, a custom fixed-
point translator function, and several pieces of data from the

IMPLEMENTATION PROCESS CLOCK CYCLE

Process Clock Cycle
Encoder 1 12
Encoder 2 8

Lambda 8

Decoder 3
Encoder 3 8

Offset 1

Total 40
TABLE III

SYNTHESIS PERFORMANCES RESULT

Parameters Value
#Clock Cycle 40
Frequency 100 MHz
Excecution Time 400 ns
Throughput 80 Mbps
Power 1.433 W

dataset. Jupyter Notebook was also used to perform compar-
isons with the dataset and display the output of arrhythmia
detection, which is located on the board’s Processing Sys-
tem (PS). Meanwhile, the arrhythmia detection model was
implemented on the board’s Programmable Logic (PL). This
implementation is shown in Fig. 3]

Testing on the FPGA produced 17 prediction errors out
of 200 samples, demonstrating a model accuracy of approxi-
mately 91.5%, as shown in Fig.

V. CONCLUSION

The implementation of the Stacked Variational Autoencoder
(SVAE) on FPGA for arrhythmia classification demonstrates

57

The 28 th LSI Design Contest in Okinawa 2025

PS PL

Notebook

Array Data Test
—|—> Register —l
Arrhythmia
Detector
Compare 17]
¢ Register <
Output

Fig. 3. Diagram of FPGA Implementation

print("total_count=", total_count)
print("wrong_count=", wrong_count)
print("accuracy=",((total_count - wrong_count)/total_count)*100)

#IniAhmad

200
17

total_count=
wrong_count=
accuracy= 91.

Fig. 4. Accuracy of FPGA Implementation

promising results in terms of hardware efficiency and process-
ing speed. The design achieves significant performance metrics
with a maximum frequency of 100 MHz and throughput of 80
Mbps, while maintaining modest resource utilization on the
PYNQ-Z1 board. The custom 16-bit fixed-point data format
proves sufficient for maintaining computational accuracy while
optimizing hardware resources. While the achieved accuracy
of 91.5% in real-world testing indicates room for improve-
ment, it establishes the feasibility of implementing complex
deep learning architectures like SVAE on FPGA platforms for
real-time arrhythmia detection.

VI. FUTURE WORKS

Future work could focus on optimizing the architecture
to enhance classification accuracy while maintaining efficient
hardware utilization and high-speed processing. Currently, the
proposed model can classify only two types of arrhythmias:

58

normal and Premature Ventricular Contraction (PVC). Expand-
ing the model to classify a broader range of arrhythmia types
would improve its clinical relevance and practical application.
Additionally, a fully integrated system could be developed
to enable end-to-end real-time arrhythmia detection. This
system would incorporate an ECG sensor for data acquisition,
followed by analog-to-digital conversion. The pre-processing
stage, handled by the Processing System (PS) of the FPGA,
would extract key features such as the timing of ten peak
values and normalize the input data. The processed signals
would then be sent to the Programmable Logic (PL), where the
trained SVAE model would perform classification. The output
could be presented as a real-time indicator or logged for further
analysis, facilitating improved monitoring and diagnosis.

REFERENCES
(1]
[2]

N. Madiraju, N. Kurella, and R. Valupadasu, “Fpga implementation of
ecg feature extraction using time domain analysis,” 02 2018.

K. Danisman, “Fully parallel ann-based arrhythmia classifier on a
single-chip fpga: Fpaac,” Turkish Journal of Electrical Engineering and
Computer Sciences, vol. 19, pp. 667-687, 01 2011.

W. Lu, J. Shuai, S. Gu, and J. Xue, “Method to annotate arrhythmias
by deep network,” in 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), 2018, pp. 1848-1851.

J. Belen, S. Mousavi, A. Shamsoshoara, and F. Afghah, “An uncertainty
estimation framework for risk assessment in deep learning-based afib
classification,” in 2020 54th Asilomar Conference on Signals, Systems,
and Computers, 2020, pp. 960-964.

R. A. Mohammed Fahad, S. Purohit, S. Bhatnagar, D. M. Kotambkar,
V. M. Thakre, and K. Kapoor, “Development of deep learning model for
cardiac arrhythmia detection from ecg,” in 2024 IEEE Recent Advances
in Intelligent Computational Systems (RAICS), 2024, pp. 1-6.

Z. Zhong and L. Sun, “Perdetect: A personalized arrhythmia detection
system based on unsupervised autoencoder,” in 2023 7th Asian Confer-
ence on Artificial Intelligence Technology (ACAIT), 2023, pp. 914-919.
S. Nithya and M. M. S. Rani, “Stacked variational autoencoder in
the classification of cardiac arrhythmia using ecg signals with 2d-ecg
images,” in 2022 International Conference on Intelligent Innovations in
Engineering and Technology (ICIIET), 2022, pp. 222-226.

G. Moody and R. Mark, “Mit-bih arrhythmia database v1.0.0,” https:
/Iphysionet.org/content/mitdb/1.0.0/, Feb 2005, accessed: 2024-02-24.
T. Fu, “Github - tonyfu97/tinyrhythmanalyzer: Tinyml-powered ecg
arrhythmia detection on arduino nano 33 ble sense, comes with a
video tutorial,” https://github.com/tonyfu97/TinyRhythmAnalyzer, 2023,
accessed: 2025-01-28.

S. Bobrowicz, “Pynq-z1 reference manual - digilent reference,” https://
digilent.com/reference/programmable-logic/pyng-z1/reference-manual,
2016, accessed: 2025-01-28.

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://github.com/tonyfu97/TinyRhythmAnalyzer
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual
https://digilent.com/reference/programmable-logic/pynq-z1/reference-manual

The 28 th LSI Design Contest in Okinawa 2025

Design and Implementation of Angle Completion Circuit Using VAE

Makoto Sekiguchi, Shun Nishijima, Yu Yamazawa, Soma Kato

Graduate school of Engineering, Chiba University
Chiba, Japan
Mail:24wm4307@student.gs.chiba-u.jp

Abstract- We designed a circuit for VAE that
generates images from unknown angles by learning
images obtained from multiple angles and built a
system on FPGA that outputs the images. We also
achieved a circuit size that could fit on an FPGA
evaluation board and a faster computation
processing time.

FPGA,

Keywords-Variational — Autoencoder,

Pipelining,

I. INTRODUCTION

The demand for 3D model creation has been steadily
increasing in recent years, yet the production process
remains complex and time-consuming. Efficient
production methods are essential for the rapid
generation of 3D models that support critical
applications across healthcare, industrial design, and
entertainment sectors. While 3D models enable visual
communication and analysis in various fields,
traditional creation methods require specialized
expertise and considerable time investment, limiting
their widespread application.

In response to these challenges, we aimed to design
hardware capable of predicting and generating complete
3D models from a limited number of 2D images using
VAE. This concept formed the foundation of our LSI
design contest entry. By developing this hardware
system, we sought to address the human resource and
time constraints associated with 3D modeling by
enabling visual generation of complete 3D models from
images captured from limited viewpoints.

The system operates as follows: When images of an
object captured from multiple angles are input into the
system, a two-layer neural network (encoder) computes
the latent space representation of the image set. By
extracting latent variables from this space and inputting
them into a two-layer decoder, the system can generate
images of the object from arbitrary viewing angles.
These output images can then be integrated to produce
a complete 3D model in a short time. This technology
enables anyone to create 3D models easily without
specialized knowledge, significantly expanding
accessibility and practical applications across various
fields.

59

II. LEARNING METHOD

An autoencoder consists of an encoder component
that extracts essential features from input data and
converts them into a low-dimensional latent
representation, and a decoder component that
reconstructs the original input data based on this latent
representation. This architecture enables data
compression and restoration, facilitating feature
extraction and dimensionality reduction.

Figure 1 illustrates an example of an autoencoder
model comprising three layers: an input layer, a hidden
layer, and an output layer. In this example, both the input
and output layers contain »n units, while the hidden
layer contains m units. The input and output layers of
the autoencoder are defined by Equations (1) and (2),
respectively:

x = (xq,%p, 00, xp)7 D
0 = (01,04, ...0,)7 2

where x(n) represents the nn n-th input and x”(n)
represents the nn n-th output value. The model depicted
in Figure 1 adheres to Equations (3.1.3) and (3.1.4):

h=f(Wr+b) (313)

o=f(Wh+b) (314)

where WelWW e We denotes the encoder weight

matrix, beb e be denotes the encoder bias vector,

WdW d Wd denotes the decoder weight matrix,

bdb_dbd denotes the decoder bias vector, h(n)h"™{(n)}

h(n) represents the hidden layer output (latent

representation), and ff'f and gg g represent activation
functions.

Hidden Layer

Input Layer

Output Layer

Fig.1. Autoencoder Model

Activation functions are mathematical operations that
introduce non-linearity into neural networks, enabling

The 28 th LSI Design Contest in Okinawa 2025

them to learn complex relationships in data.

The Variational Autoencoder (VAE) represents an
advancement over traditional autoencoders by
integrating a probabilistic approach into the
autoencoder framework, allowing it to learn the
underlying structure of data and generate new instances.
While conventional autoencoders output latent
variables as discrete and fixed representations, VAEs
encode latent variables as continuous and probabilistic
distributions. This capability enables VAEs not only to
reconstruct the original input but also to generate novel
data similar to the input by manipulating variables
within the latent space.

average
Iatent variable

“
H
L
standard /é
deviation | *

@?B

random
number

Reconstruction Error
Fig.2. shows a rough outline of the VAE model.

input —; Decoder output

Our system utilizes datasets comprising multiple
viewpoints of arbitrary objects to train VAEs and derive
the latent space. By inputting interpolated values
between the latent vectors of any two viewpoints into
the decoder, the system can generate images from
previously unseen viewpoints that are not present in the
original dataset. The implementation of such view
synthesis requires datasets containing images of objects
captured from multiple angles. Therefore, prior to
model training, we created a comprehensive multi-view
image dataset of the objects. The specific methodology
is described below:

1. Record video footage of the subject from a fixed
direction for a predetermined duration

2. Repeat this procedure three times (from three
different angles)

3. Extract individual frames from the recorded videos
using the OpenCV library in Python

4. Crop the extracted images to form perfect squares

5. Resize the images to the desired dimensions using

OpenCV to create the dataset

The images used in this study are grayscale with 256
intensity levels and a relatively low resolution of 32x32
pixels. To achieve high-precision view synthesis, the
training process must be highly accurate; consequently,
we prepared 2,048 images for each viewing direction.

The VAE was trained on this dataset using images of a
particular mug as the subject. All components related to

60

VAE training were implemented in Python. Table 1
presents the various parameters of the VAE designed
specifically for this system.

Table. 1. Each parameter in learning

Epoch 30
Batch size 32
Activation Function ReLU Function
Error function KL divergence
Optimization Method Adam
Learning start weight All random
Learning start bias All O

IOI. CIRCUIT DESIGN

The FPGA evaluation board used for implementation
was a Zynq FPGA from AMD-XilinX. The evaluation
board specifications and development environment are
shown in Table 0. This evaluation board contains a SoC
in addition to the FPGA. Table 2 shows the
specifications of the PS part of the SoC.

Table. 2. FPGA evaluation board specifications

FPGA Zynq UltraScale+
MPSoC ZCU104
Logic cell 504000
Block RAM[Mb] 11
DSPSlice 1728
Communication Protocol AXI4-Lite
Development Vivado 2023.2
environment

Table. 3. Specifications of PS section

CPU Cortex-A53
Memory [Gb] 2.0
(0N Pynq Linux based on
Ubuntu 22.04
Compiler g++ version
Development Jupyter Notebook
environment version 2024.11.0

The protocol used for communication between the
PS and PL sections is AXI4 (Advanced eXtensible
Interface). This system uses the AXI4-Lite type, which
is easier to control than the full version of AXI4.

The two latent variables input to the decoder are 16
bits each, so the 32-bit input from the PS section is
directly input to the main circuit (decoder) in this
system. The output from the decoder is a 32 x 32 pixel
image, with each pixel being 16 bits. The output is
formatted to 32 bits in width in the data controller and
returned to the PS section through the FIFO.

The 28 th LSI Design Contest in Okinawa 2025

PS(CPU) PL(FPGA)
AXl-Lite decoder
WDATA
32 16 x 2
w, b
input data // » / > Fully Connected < ROM
/ Layer
AXI-Lite
RDATA |
82 32 32 x 32 x 16 ,
< / < 2 < / Deconvolution w,
output data [« 7 FIFO b 7 output control 1« 7 Layer ROM

Fig. 3. Overall view of the system

The processing steps for image generation are as
follows.

(1) The latent variable input from the CPU is sent to the
decoder.

(2) The bias and weight data stored in the ROM and the
data in (1) are all combined.

(3) Perform inverse convolution on the bias and weight
data stored in the ROM and the data obtained in (2).

(4) The data obtained in (3) is sent to the CPU.
Processes (2) and (3) are explained below.

The all-combining layer, which processes (2),
combines the data information and outputs new data. In
this system, the data sent from the CPU is multiplied by
the weight data and bias data stored in ROM. The
weight data is used to transform each piece of data, and
the bias data is used to bias all the data in the same

direction. The formula is shown in Equation (3).
A =2z3W11 + Z;wyp + by (3)

The output result z_1 is the lower 16 bits of the input
data, z 2 is the upper 16 bits of the input data, w_11 is
the lower 16 bits of the weight data, w_12 is the upper
16 bits of the weight data, and b_1 is the bias data. This
allows arbitrary transformation of the input data.

Before performing this calculation, a function is
defined to multiply two 16-bit fixed-point data, and this
function is used for subsequent multiplications. Since
the data width of the input and weight data is 32 bits and
the data width of the bias data is 16 bits, the calculation
was established by dividing the input and weight data in
two.

The circuit diagram is shown in Figure 3.

/ Fully

Connected
Layer

32bit

8 16bit

®

Input data
16 %

4096bit<

@

Weight
Rom

\

®

~

1 T\ 16bit

]

Qutput
data

16 %
1024bit

[l
DD €

L

Bias
Rom

/

Fig. 4. Circuit diagram of all coupled layers

In (3), the inverse convolution layer creates kernel data
by using weight data from ROM and performs inverse
convolution processing on the results obtained in the all-
combining layer using the kernel data. This generates a
high-resolution feature map from a low-resolution
feature map.

The calculation procedure is described below. The
weight data for the inverse convolution has 144 bits,
which are divided into nine data sets of 16 bits each and

61

treated as a kernel matrix. Then, as shown in Figure 5,
the product of A and each kernel matrix obtained in
Equation (3) is calculated. This process is then
performed on the array to the right of the first one. The
result is then stored in the array two arrays to the right
of the output data. If the previous data already exists, it
is added to the output data. This process is performed on
all 256 cells of data A to complete the convolution
process. The output data is then combined into a single

The 28 th LSI Design Contest in Okinawa 2025

array and sent to the CPU. The data to be sent is a
16384-bit array.

The schematic of these calculations is shown in

Deconvolution
Layer

/'

16bit

16bit
J—Iﬁlﬁb”

Figure 4.
\

— AN

[\
Input data ——@ | TR Output
16 % I — data 16384bit
1024bit ! !
1
_® -
I_’ L
Weight Bias
Rom Rom

\

/

Fig. 5. Reverse convolution layer schematic

Pipelining is a method of reducing computation time
by performing multiple instructions in parallel. In this
system, five instructions are processed in parallel when
performing inverse convolution processing.

When each of the following operations (1) to (7) is
performed in one clock cycle, the pipeline processing
operation is as shown in Figure 5.

(1) Reading weight and bias data

(2) Multiply input data and weight data

(3) Addition of bias data and the result of (2)
(4) Creation of kernel

(5) Multiply kernel and (3)

(6) Add (5) to the array for storage

(7) Store output data

(8) Output data molding

(9) Send end signal

The actual number of clocks required for this system
is shown in Table 4.

Of these processes, pipeline processing is performed
for steps (2) through (7). The number of clocks is
about 256 times larger than that without pipeline
processing because 256 (16 x 16) data are processed in
parallel. Therefore, this process succeeds in greatly
reducing the number of clocks.

However, this pipeline processing is controlled
using multiple counts and requires accurate timing of
operations, which is considered to be a high degree of
difficulty. This time, the timing was calculated in detail

62

before implementation.

Table. 4. Number of clocks per operation

Processing Clock
@ Read weight and bias 1
data
2 | Multiply input data and 1
weight data
(3 | Addition of bias data and 1
result of @
@ Create kernel 1
® | Multiply kernel and 3 1
© | Add® to the array for 256
storage
@ Store output data 1
Output data forming 1
©) Send end signal 1
Total 264

Fig. 6. also shows an image of the pipeline process.

The 28 th LSI Design Contest in Okinawa 2025

10 11 12 13 14

CLOCK

® | ©

Fig.6: Diagram of pipeline processing

IV. SYSTEM EVALUATION

Table 5 shows the circuit scale of the designed circuit.
The operating frequency of the FPGA was set at 100
MHz. A comparison of processing speeds on the actual
device is also shown in Table 6.

Table. 5. Resources Used

Resource | Utilization Utilization[%]
LUT 26494 11.50
LUTRAM 101760 0.01
FF 460800 3.81
BRAM 312 3.85
DSP 1728 0.64
BUFG 544 0.18
Table. 6. Comparison of calculation processing speed
Environment Computation time
[ps]
PC(Python) 139507
Simulation 97.34

As shown in the table, the speedup is approximately
1,400 times faster than when executed on a PC.
Although a simple comparison cannot be made because
of the different languages and implementations, it is
believed that the speedup was achieved by using
pipelining and other speedup techniques.

V. OUTPUT RESULTS

Figure 7 and Figures 8 and 9 show the input and
output images (left: input, right: output) generated by
the software (Python). The output image is the input
latent vector, which is the average value of the labeled
data set. It can be seen that the output image is close to
the input image. However, if we focus on the details, we
can see that the contours are blurred. This can be
attributed to the loss of contour information in the
compression of encoder features, which is a
characteristic of VAE.

Figure 10 shows the output images when the average
values of the latent vectors of the left and center
viewpoints are input and when the average values of the
latent vectors of the center and right viewpoints are

63

input. The image on the left side of Figure 10 is expected
to look like the image seen from between Figure 7 and
Figure 8, but the image is actually closer to the image
seen from slightly left of center. Similarly, the image on
the right side of Figure 10 is similar to the image viewed
from slightly to the right of the center.

This confirms that the decoder can achieve the
original goal of viewpoint completion by inputting the
average value of the latent vectors for each viewpoint.

— ‘ - N e .
Fig. 7. Software input/output image
(left side viewpoint)

Fig. 8. Software input/output image
(center viewpoint)

I
Fig. 9. Software input/output image
(right side view)

The 28 th LSI Design Contest in Okinawa 2025

a Jl_l _u e | a L 3
Fig. 10. Output image from average of latent vectors
for each viewpoint
(Left: left viewpoint and center viewpoint

Right: right and center viewpoints)

VI. CONCLUSION

In this study, as an application of VAE to image
generation, we designed and implemented a circuit for
angle completion to generate images from an unknown
viewpoint. The circuit design needed to handle 1024
dimensional features, so we focused on efficient
memory access and optimal allocation of computing
resources.

However, implementation issues remained, and we

were unable to evaluate the processing time and circuit
size on FPGA. In the future, it will be necessary to
modify the circuit to ensure stable operation on an actual
device, measure processing speed, and compare
performance with an emulator. We also plan to optimize
the circuit design by evaluating resource utilization.
As for the creation of 3D models, which is one of the
objectives of this system, we intend to implement a
function to generate 3D models from images obtained
from multiple viewpoints. In addition, we will improve
the resolution of the input data to achieve more accurate
circuit design, thereby realizing a highly practical
system.

We also aim to realize a system that enables efficient
3D modeling and image processing in industrial
applications and research and development sites. We
hope that this system will be widely used as a support
tool for creative activities in various fields.

REFERENCES
[1] Xilinx, “ZCU104.” Available:
https://japan.xilinx.com/products/boards-and-
kits/zcul04.html. [Accessed: Dec. 10, 2024].
[2] AMD, “PYNQ | Python Productivity to AMD
Adaptive Compute Platforms.” [Accessed: Dec.
10, 2024].

[3] 7=k FEZ, *€ w2 51E% Deep Learning —
Python TH¥XT7 4 —7 7 —=v /7 OMigs
Foe—* F+— 2%k, 2018,

[4] D.P. Kingma and M. Welling, “Auto-Encoding
Variational Bayes,” *arXiv preprint*,

arXiv:1312.6114, 2013. [Accessed: Dec. 20,
2024].

[5] Xilinx Inc., “Vivado Design Suite: AXI VY 7 7

(6]

LY AHA L (UG1037),”
https://docs.xilinx.com/v/u/ja-JP/ugl037-vivado-
axi-reference-guide. [Accessed: Dec. 20, 2024].
AMD, AXT DFERE 1-AXT O,

https://adaptivesupport.amd.com/s/article/108795
8?language=ja, [Accessed: Jan. 31, 2025]

HoALBC BBV 84HS OB D0’

— g "\

©098free

aAVTAMIBELTOBREEE:

AWM I EXZERTFBER - BEIFZHENRRERN
LSITH AoV TANERITERLEER

TEL :0948-29-7667
http://www.lsi—contest.com

	Introduction
	Related Works
	Model
	Hardware Implementation
	Implementation
	Implementation Steps
	Synthesis Result
	Implementation on FPGA

	Conclusion
	Future Works
	References

