The 27t

LSI DESIGN

CONTEST N
in OKINAWA 2024 i

(BIEBRAMBRRY

N L B 4

T L

2024V FAPTF ="
Autoencoder

FR#ER: SF6E3A8A(E)
MFRRAET., 1-JLTREEREY I

EfE: LSITHMVIVTANRTER R, BEBRNNKBEIATLHIREYS—
FAE: MRKKPTPE, W ITRXFRBMITFE

B BF T/ MAEEHF (DL BREERTHE), $H07- L4,
EFRRBEFERAV-MUTAAT P IATLHRE,

®E: AMBRENBRAREXER, HEBEENBRAREXER, ColikRtt

http://www.Isi—contest.com

©0CVB

>4

-
e

; & H"

HR
LSI 94 VTR MESE
2024 £ VTR b TF—<

4
a .HH
O
gg Al‘ i c
DOE DG - »
® b4 44 2
000 g %H 444
)OE =25
i e 2
3k -)
;i D&
- 3 b4
S SE
ﬁ A4 44 3 44 [.
4 4 9
E :\“:bnug: !]
O AREP 0006

L F0Be B e e N
. B S e P BISE R Sh:
L HBEABEL B RE RIS RS
. Bl —2 B RE RIS RS

. Black Russian

. EDABK

. 1ICA

. Kaomoji Fan Club

. PP E K E R RARR

N ITERTF BRI FER

Hanoi University of Science and Technology
Bandung Institute of Technology
FRERFEXF IR MEETERN

FERFXR D MEETER

01

03

06

10

13

19

24

28

82

88

94

VTR MOEIE - BY

FUN « PRRS BICHRET T ¥ 7 MO8 APESE R K UONHINAIMES S S D L 7 s b= APEZEOIRRLE A,
EEEOSERT ORRGta T7 A MemFER L TR 9, B, FERT JOYUN TEERFEOHE Tk 3
BISITHA a7 A NATERATHEM L TERY £7°, 20244F1%, BN EE DAL EBATICHERH D £ L
7=

WS LU R RO LST EEFEMLS . Oul, @E, &, PE, o R—n, 740y, v
—)T MR OEERATSROEIZ 40 $ZZ Dm0 = T 2H L TEY JUNLLEO AAR TS FEA).
ZOHNNET DRI E D E T RAT ¥ U ABKEESN SO EHIFFSIE T, %9 L7 HIBATSomHRIC
T, FAEMTISIEG a2 T A MEEML, FETRDbOREOT L P=T OGEATVE EFHZ Ll2ih, [
SN IHECHFE 7 27 CORFERERN L T v —HEICORT TN EB X TBY 7,

AL, Al O—>TH5D [Autoencoder] M7 —=<12720 4, Y OEHL, [FIEEEEOEEAE B L7~
— R TR L, WAWARTATTIMEEND Z A F L TRY £,

RKarTANOEFE TERIEE . 2 OFAEORERE (ME, KPE, KBk OSMESREL ThkY £

SR ORERS R

BT, THRF, JUNTIERT:, SRHRT RO TR, o

- SR IR, KR TIAF, KRR, FOAF, s,
0 HITRERS, MRS, ST, ke, ks, &
80 SUTHER, USRS, AGEIRRE, HULE, AR,
;2 : SHEHITRIEAY, BRE, AR, B, BEORE, IAE.
w0 W BRI, IR, TR, TR, AR, A,
40 PELKETS, BEY, IR A
> e L
10 V] 3 Bandung Institute of Technology . Institut Teknologi Telkom .
0 Telecommunication College Bandung . Telkom University (f > K53

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
7). Univ. of Science, Ho Chi Minh city, Hanoi Univ. of Science (X k7~
2.), Chosun K% (). Univ. of Valladolod (234), Univ. of
- *Laf't‘“ GJEQE _E%% KaT]:serslautern (FAY), NTI (=27). McMaster K5 (7F%). #irh
Ko ()
B 20014 [FUXLMA Lv—

L B 20164 : TR H R E —r~ T 7l
2002 4F : [FEEAKEWG ST —3TIEEEK)

: e s W07 AR 27 A
B 20184: [=a2—FLxy b T—7
B 20044F: [HL@blme - AES F SubByte ZSHAIRIHS | . e o
W 20054FE: [FUHLRLI— \(/\%7713\/\/7&*;/50/?
B 20064 2 doTR R LT a—) 09I R (TR)
W 20074 : 64 ﬁ‘.%i%7— U 5 00t %ﬁ%ﬁ:lhiwx v R O
WM 20084 : [RSAHGHT a—4) Rl R
W 2022 4F : Deep Q-Network
B 2009 %F : TSme:ll I?ISC Processor | o024 R/ S M
W 20104F: [=F—{TiE : BCH 755
B 20114 [Ty m 2024 £ . [Autoencoder]
B 20124F: [16/64/128-point Flexible FFT)
W 20134 [SW- HWigaiaRata Ve) A RBRET AT A
W 20144 TSW - HW ialiaxita e A ABRED AT 4
W 20154F : [IEgeAlmlEs)

4 Moo TETELSITYA a7 AR in il 2024)
% .

FTEE D JUNTZERTF R RIS Hl - BE TR Zde R
ES fie : LSITHYA a7 A NETEES, SEEHWERS AT 2t 22—
http://www.lsi-contest.com/

3t fie : BERRTF LM, JUNTER PR L
1 B TN AR (BEEARESEETR) |
XH 77— A S, EFERBETFRAYT— MM U T4 AT 4 T VAT MR,
B CQ Hifit.
JUMNTBSERBTIBATE R T, IFTBCERE) PR K74
SATEHR - JUNTERFER TS ® - @ TFRRAsee=s
LSI FH A v arT A WIMTRERFER
H B @ 202443 A8H (&) 13:00~18:00
= % ¢ T907-0012 FETISEIRHT 1 M
a—7 LA Y — L
H By SEREASIEA O ROT U X OVEERRIEEGT O T A N THY | EE AR
FEEFEEREHRE I D] & & BICERRNCRNTT 5 2 & THRAED TR T 208 2 R
HZEEHBE LTS,
*f % [EHRNRE - REPHE, mETE, 7 U7 HUBOR AR
SkETEE 0 1004 (NHEEED
FEEE S 0 BRF - mEASO/RCT Ly MEff, LSIBEMEESE~D Y U —2X
A—2b— . http//lwww.LSI-contest.com/

[FF&E]
FITRER . JUNTEERT B i#
FALER . BERKE fal EA
HHRY JEH B2
PN N o i
TR P R Ek B
SO (P BAE
JUNTEERT: By AT
JUNTZKS Leonardo Lanante Jr.
TiEKRY HH 2Tk
T 4 AR I K% Wahyul Shafei Amien
N RUTAEERS: Trio Adiono
JUMIBZERE BT AR M EZ
IR ERE I BRI R
3 - IEASKER (BRRERE - NEASIF])

HIESE

£ A : T820-8502 fRlM AR 1) 1 680-4 FUMN TIERFRFBLIER T FRFFEelE i - (5 TR
TE nh o 0948-29-7667 Email: support@LSI-contest.com

LSI 7Y% A v arT A NEITRERERR

Y RBA [

[%5t7—=<] Autoencoder

F7EDOT —~ %, ALOFTH BRFESFOMESIRER EISHS N WS A — by a—2—T7, &
[l TAutoencoder] Z#7—~ & LT, BLOEH(L, BIEHHEOARNEE Bis Lo — RU = TG 21T 5
ZEHBEE LET, Level IOFUETIL, 3X3DOX ZHET DI A G LET, Level 20FETIL,
TR U TAT B OMHRIZ% T D Autoencoder DIAIFE Z5%FT L 77, Level 3OFVE CIIMIBEOMEIE XX
THHE L., L=a=—77pAutoencoder i L7 AT L& REF L ET,

TR SN TV H%EHE, HDL (VHDL®Y U< i3 VerilogHDL) 12 X 25%51 & sBR ARG L OMGEHE T
7T

EHETFILT) X LERE

B Autoencoder O
Autoencoder |FRICEEMET D L D ey a—X— LB a TH T a—H— L TSIV ET,
B LT, 3X3 DmfRIZEIT 5 Autoencoder DFERRIX 2~ LE T,

3 0.8550
0.8293
0.6704
0.5569
09361
0.6039
0.7032
0.9316
0.8194

1.0000
0-9973 White: 1
1.0000 Black:0

0.9976
0.0021
0.9975

1.0000

White: 1
Black:0

i

0.9974

1.0000

S

Synopsys® Synplify Pro® /Premier

Synopsys® Design Compiler®

Mathworks® MATLAB® /Simulink®

Xilinx Vivado® Design Suite

FIITEREHRBEIS U C, Synplify Pro/Premier or & OftiFaEEA > —/V, RTLhand coding(VHDL or
Verilog-HDL) 72 E O EHREE ST HLE T,

ARRE

1. Levell:fJaETalS

3 X 3DOXEHEE X
=R THHADT T NI A
s I al—v g HO verilog- DL 7 7 AL

N RU=TBEOT T T A L OfEE (T 1y 7 OFHE)

2. Level2:HkE AT

FHEHEC L UEROEE (BA, 71— F—)L)
cN—RUTEEFOT T N T A
s I al—ya O verilog- DL 7 7 AL

N RU=TBEEOT T T A L OfEE (T 1y 7 OFHE)

3. Leveld: BT

unlimited (VAE 72 & &8I LET)
cN— R TRETDOT T T A
eI al—ya O verilog-HDL 77 A L

N RO =TBEOT T T A L OfEE (Ta 7 OFHE)

E& : JUDGE

B SEAEAN—IZEDUTD4HES 10 A THFAZ FER (10 point each)
1) THTI v I, Biar 7 A7 7897285 (Academic, New Idea)

2) FEHRRE. FEXEEISHPZB A (Used in real life, Good for industry)

3) FPGA D FEE L~ LDl A (Good prototype by FPGA etc.)

4) 717 — a0 (Good presentation)

=& - AWARD
B B (BrEHREETS SIS H) SISAWARD
(T HF v 7y, Brar 7 A 77 E 4] © BEST

B Zofti, 2), 3), DOBHSANLLLEEZBRELE T,

BEFHEORFEERMY AT LD

F—24 Fobs
BB BR%R, FfE g, BLRER FER, PR A

Abnormal Sound Sensing System for Cars

Koharu Gushiken, Tatuki Tibana, = Kouya Yonaha, Tomoki Taira
Department of Advanced Electronics Information Technology for Production System, Okinawa Polytechnic College
2994-2 lkehara, Okinawacity Okinawa
Email address : j2321307@okinawa-pc.ac.jp j2321314@okinawa-pc.ac.jp
J2321318@o0kinawa-pc.ac.jp j2221313@okinawa-pc.ac.jp
Abstract: This system records the sound of a car engine, determines whether there is anything wrong with the engine sound,
and notifies the driver.
To keep ambient noise from affecting the judgment result, noise elimination is performed using MATLAB, and FPGA is
used to determine whether it is normal or abnormal.
Keyword : Car Engine, Noise Elimination, MATLAB, FPGA
REEPHIERM BRI EE 5220 L 91
MATLAB T/ A XREZITH. A— bz a—F%

1. IXIC®HIZ

. . . FIE LU 72 FPGA 2 L, = YU FDIER & BE
PUE, TR I PR RS CH Y, FHES 5. AZEFE, MATLAB &0 CH A
Hatkr g RTANRN—NH#EIEL TV 5. WWBTIIER G) B

MELS OB FEN VRN EbH D, RUTHIEL

VAT ADE (A X 1 2T,
TUE D LmElE, B & 0TI LA X BT AT BOEWHR AR E T

LTLED. ZZCREBIIHORFEHEEMRLIL, PC(MATLAB) FPGA
HICREL RV AT ORI BRI E PR TE DL AT /le%%W% f\ a
LD ZATO Z LI LTz, l
2. BAREEREE ‘ ~ XlMZHE ‘ Autoencoder
K AT LOBFEERE A2 112”77, MATLAB T \ \ SD H— K
J A ABREL L OHIERROBMZITV, FPGA % H ‘ TARERST ‘ IVYVENER
TSRO ERERELTS . [wEwRemE |4 e
1 PHFRSERIE S U TILEE
oS Windows10 l
MATLAB R2022A i‘i?ji?ﬁi?
VIR =T VIVADO 2020.3 NG =/ _
Vitis Model Composer 2022.2 1 R
\‘ ZYBO_Z7 zynq-7010(DIGLENT
o RvET ¥ FPGA) 4. VAT AR
2 AT AOMHEL O % L FIoRT.
3. L RF MEE 4.1. v v EORE
Ko ATF MEABEO T DB AR L, T TrYroTuy N7 UG AT o=
TR A0 & I L CEETIC A 5 5 o A7 05 HROES 8,35~ Dxy T HER
F ANTh 2. BT5. ERTHEA~Y— 7+ THRELEZ Y

CUBEHEH L. T—H2D 7+ —~v M
[md4a] , TV UNEFFANYDODKRKF V0%
xgr L Lz,

42. v vED I 4 BER VT — 2B OH|

Wk
MATLAB Z# v, L FOFIR TV

T2 &M L.

O T L=y rF (57— 270,000)
EANIIT .

@ EMRHERRERD LI, By AT
W% 1000Hz IR TE LI ANA R AT 4 VA
LT, ROFELEMOME % RET
D.

@ THAEEHLTI-OIZ, TFT—X ORE
OFEEEE (1.0 715 1.5 oMo 0.5
) ZE0 L (57— 24,000)
8000Hz DY > 7V v ZJEIEs TV — Y =28
#i179 (5 —#%8,000) .

@ IBIT—HHEEHEOTIEOIL, 7T—U 2k
W LloTr— 2282 (F—2%8) .
® HEMIC 8 F = DEFFRT — LT RTDT
— 2B EHIE L, 8x8 DF—H|Z L.

43. TV VEOIEERENE (FPGA)
ANJ1E 64 g, HiHiE 6 k&, 7158 64 EoA4

—hxzmra—4% FPGA|ZFEEL, ITFTOFIE

THGREZIT > 7.

O EFRTZUVUEORMEEA— b a—
FIZELTHEESED.

@ FELFHEEZLEIC, TAMNHORE
TV rFETra— K- Fa—RL, Hif
KT —H AR T 5.

@ A—brzra—FRERLEEERT VY
BFTOWEET—2 &, TANHORE R
OB OFET X OMEEHETD.

@ BEZHEL, HEOMEABMEELY LS
AILIER, REWGEIERRT LHETS.

4.4. YV TABE - SD A—F

PC - FPGA R — R DOT —X O B XV 7
JVidlE & SD 1 — RO ANEZ TIT 9.
A RpEZIToT-2 P H % SD I — NICE

s,

SD 71— F#% FPGA R— RICANE 2, EFRE

DHER R A > U 7 viEfE T MATLAB IZXET 25 2
LTT—=2DRDIWY 2179

5.

BRREAS S
MATLAB %l U~RRGEZTT o T2 B DX T A — 4 L
T ORERELLTICRT.
5.1. 785 A—X
ABIOBFETHEM L2 XT A —% 52K 2 1R
7.
F2 HFHLENRNTGA—X

FEE | FEEE | PREE | BEE
0.01 10000 6 0.35

T
L L
1 3

5.2. EERERT —¥

UTFICERE R ERT — 2 &8 Uit — bz
o=, ERBRe P BEET AN =2 L L
TANLEBO 7 T 7 %R,

FREN A CEEIRIZ X 0 8000Hz 7> B/
L72) Ttz oS coms 2 iEFl L7
HLOTHD.

$BF-5
4

PN

5
FART-5

' //.]

5
FI-FENETART -5

4 5
REBAER

L s L s L s
1 2 3 4 5 6 7

©

X2 ERREHFET—X

o FHIT—X B 413X 3 THREARA S AU TOIZ A X O 2127
FEAE L THRBLE 8 OEHRT — 4 & FHMt HLTHHEZRRISELLDOTHS.
L ORI D H LT 80E X D2 OFIETIET A BT —4130.999... L 72> T
® TALT—H WAHMN, 73— R%I1L0.606... k72> T05. et
BT X g TNV N IE R AR T — & A PRI LT LOFET 2T X D2 BEWEIETIZZR WD, %
HE A LD WL DR EFEL, TAMT =2 bZDXSIEELT
o Fau—NENEF—X no.
AN LT/ T — 2 4 — b a— & THAEE . . BTy '
LT —# 05% k
o Fa—FERETR T ™2 1 Vg © 1 ¥

AJI AT A NF B e b a5 TR ot \\; | ;//;//<
: Y 0.999969
S L7 — 4 ° . ; |

1 2 3
o BERAING R '

LT — X OBENPBEZ BT LD OZ' — : A

», TRDLREOHBERRALTND N T
205, TEERIFER) I2B8WT, BN os| - \
0 : d L |
PEZERCHDEND 1 ERTWARNZ & . 2 P e = i)

5 TE#H] EHELTWDZ L RbNS. i)]ﬁ '

L L s A
1 2 3 4 5 6 1 8

53. BHAEBRT — 4
ERRERT =S 2FH LA —bora—4
IZ Youtube (28 Fm SN CTW = BE RS FT — 2

4 RERERET—2 (BUE)

EADLEBO TS 7 Ths. —ORNE R K51X7TARNT—FDEET 2 — RIEOHEDEE K
BRSSOl MEENBEA B RIS S W27 77 Thh. XD2H30393...L72->TEY,
N5 1LBEASHTOAETNSHS. ~IITES ZHITRIEE D 0999 & 0.606 &5\l THD. 4
BREFF— 2 L DEENREAE LTINS LD =L EIEMEZ 035 & LTRY, ToMEL R~/
THY, TRE] LHELTVDZLBDD5. H, R LHESNI.
04 '} T Lz T
i : —PETE . :((3;393337
Il 2 3 4 sy 5 6 7 8
" \ / "l
N e S A
o zl 3 4 5 6 ; 8 0
3 . 7"']'—1‘3117‘:'?1%7-'—5 . ‘
1‘ . ; Ti#&iﬂlﬁ%? ; : =
as -02 S
;) 1 2 3 4 5 6 7 8
B3 RERTEHT S S

54. ¥ av—3 a VIRIEER
MATLAB T I 2L —3 g v LIEERA2FE 3T
T, ZORIE, FEHLA— b a—FiZ, EWE
EREEOT A NT =& AN LTEGE OB RMO
AR L TWD., ZNEN10EOT A T —X
ZRAEL, BT 24, EWE, BEFELEbo
H 70% DRI L g~ 7.
#3 vIal—a UREER

FTA T —H EHE B
Bk h 7/10 7/10
[DRCIES 70% 70%
6. BHhIZ

Al F— b a—XE Nz Y0 RE
HEERITH Z LM TE 2, UL, BEITMATLAB E
THEFRZMLLREHRABIToTWNAHD, BERET
(B RRN A FPGA AR — RA~SE3E L, MGEX 5 L)i
HTWVETU.

23 3k
[LIKF => Y B (= &imEIT8 %) /Youtube
https://youtube.com/shorts/r8GV_INNQ98?si=SKMXGIufJPgPV5L8

https://youtube.com/shorts/r8GV_INNQ98?si=SKMXGIufJPgPV5L

FBR7V Y MREV AT LAORHRE
7‘—‘5%: @%ﬁ
i gHET BVTH BE HHE kK

Development of learning print scoring system

Kaito Irei,

Samueru Ueda,

Tomohiro Shinzato,

Department of Advanced Electronics Information Technology for Production System,
Okinawa Polytechnic College
2994-2 lkehara, Okinawacity, Okinawa, 904-2141, Japan
Email address: j2321303@okinawa-pc.ac.jp j2321304@okinawa-pc.ac.jp
j2321311@o0kinawa-pc.ac.jp

Abstract: Teachers at schools and cram schools need to grade worksheets, but the large amount of
worksheets and illegible characters make grading time consuming. To solve this problem, we developed
a study worksheets grading system that uses an autoencoder to identify the characters in the answers and

reduce the grading time.

I. #1®ic

PR ECHIMEEE) v RRAT S
VBERDHDLH, 7) Vv FDEHS NI ELHAIY
W WFEDH B L v o 727 A TR O EZE 1 s
o> TCLE .

Z ZCHRAERE AR FEET 5 7200, Fa
Autoencoder % i\ T O SCFHIR 21T\, FH
7YV PO AT LEAERL 7.

. YRAT7LDHE

VAT LD ANINIEFEDTLA L EEOHIRE L,
b3 2 E{RILEE % Matlab | TfTw, fHOHZIC
—fiEft L FEMEZ AT 5. £ D& FPGA K — FICfEZ &5
L, FPGA K — F | T Autoencoder i X % SCFH[5H] %
79 MBI L 72807 % Matlab ~ 2 EEL, FEH 7V v
FOIFRRMEEIT S EDOT — 2%, TF A P CREE
Ih, FEDYET R E L TKRT.

Ah A
% -
7 & X i3 iz
) i » = D uE o
AN R B
£ a0 @ | ! il %
T A i
H 0 _% b
2 #)
E
M1 27505

10

1. GASERES

R 27 LORFERE 2R 1 ITRT.
v Ial—va Vi MATLAB, i+ — Flix ZYBO
77 2yng-7010 , ~— F ¥ = 7 #%&Hic MATLAB,
Vivado ZffiH 3 %.

* 1. [AFALE

Windows11
MATLAB 2022a
Vitis 2022.2
Vivado 2022.2
DIGILENT #f:44
ZYBO_Z7
zynq-7010
MATLAB

=

= e

oS

BFY 7 +

APl — ¥

IV. BRI

BT v ORIE ETEDOLTICE %, WEB
NATTHEERTY v EFGET 5. Matlab CHI{RULEE
XD REERT R L, BT — 2 & L CRET 5.

HETY v OEILEFREREEL, HFED
1~5 2L LCRRATZC T2 . 0BG LAZ7Y
v REOWRIL, BEOHB TR K520
Matlab FeXFoBE @ L, 7) v r oG 2 O NEX
22k %E4TH. BMEERHT 22 LA TE 2R/
F— X B TH B 5x7 B0 WG EM T 5. LB
DWMNEHK 2 ICRT.

3,-».'»

OFEREmE L ZEL @&BEbYIyT GO EfR

2 GO RN

V. AUTOENCODER i k 3 B8

A HEIZ—XETF X PT—X

Autoencoder IC & 32 %F 3, FPGA A — F L CfT5.
EBR L L T Matlab 1 T8(F 1 L 8T 2 DG % b
R X T BT 1 BN O fE R A BT
5. AT — £ 134T 35056x7)HFETIT-> 7.
DEDOKcHRK L T» 3 WRT — 2%, FiliED 0~1
DHFFHDEEL 72> TH Y, A 1, B2 0 %K.
SHHBF LHF 208 T — 2 2 2N Znd.

1) epoch(F# & [A1%0)

epoch DIEZLI T DK 2 D X 5 IcE{LE T ¢ 7-.

7 2. epoch ®Z At (eta=0.03, H[HfE D FEHH=3 DKF)

1000 | 5000 | 8000 | 15000

20000 | 30000

¥ 3 epoch=1000 ICFXET 5 & HF & 38 L 1T < W]
7 — 28I ENn s, X513 epoch=10000 D FERK
FEHODL MADBEYV DT AT —2%FELL &

DR TH 5,

0.995398|
0.992153
0.85754]

0.990603f

0.970926|

0.846862f 0.967533f
994045| 0.987053]

3 B LEE 2 0¥l T — &

0.996749 0.996949|
0995532}

0902113} 0872572}

ERRL7HF 1 DT AT — 2 %241 d. K41
H5HA4ODMERT — 21, T 1 DIEL WHEET — £
PO 1HZERERIFITVEIBRYVDOTF—RTH 5.

0.825075| 0.812625|

0.883445| 0.858607]

0.771982
-

5 epoch=1000 @ KFD H k5 R

epoch IXfEA K E VT &, B{RT — X DETFH L b &
BlICRR I N7z, L L, AREREE B Z X &7k
W, oIt & L CEETZ % epoch= 5000 i
% 3%E L 7=

2) eta(F &)
eta DIEZLULTDORI3I DX) B %E X687,

% 3. eta D2l (epoch=5000, H1[HE D EHE =3 D)

0.005 | 0.007 | 0.01 0.02 0.03 0.04

M4 BF1o7rAMHRY 7—%

B. ZEDNFXx—KIZD00T

Autoencoder # EITX B Z[RICHRERANNT A — 2 %
IR 2 720 EBEERIT 572 WROAT X — X3,
epoch(EEH[EIRD), eta(HEEHE), PEEOURTH 2.
FEBICHER T — 2 BAMERRTE L S R
DEEHW3 Z i L 7.

eta IIEZRELTRI1EE, BRT — 2O FEN LY
fEIFIC TR ENT=25,0.04 1T 3 8, 74 XA, K
FLLTHRELIC WEHERT — 281 d -,

11

3) /)8 DEEHK
TEEOEREM A UT DL 4 D X 5 ICELE &7,

AR 4
TEARDFIE: 1S
TEADLER - TDE=ST Incorrect Aut I0RFL LT

7 4. WlEE O EFEH (epoch=5000, eta=0.03 D) ans =
2 3 4 ERFED 4
X7 IERRYE 7 v 7T LD ETHER
HE O EEEIL, 3 21 LSRR ETFICH 2 3
HARSRICE 572 X 5T, COERRERICES T, SIEFRDERE S TOEE:

HFENTA—ZDfHIE FEEOBY B RETH S LE R .

C. FEELEANTA—2IC L B HEHFE
FERDOEE%E b L ITEFE L 72 epoch, eta, FRIEOEFE
BMENZTNDANT A= I TOMEY & 7oz,

epoch((AE %) = 5000
eta(SFAE) = 0.03
B O HRE = 3

BE L7z Fit D8 A — X Ofi T Autoencoder % 3%
TE L7 DB BEMAEE 21T - 72, B 8%, M4 o7
ANT =2 %L EDOENFERIFZUATOM 6 10K
T RADEY DT AT —RICH L TEITHTEC
Wb ENERTE B,

0.993308
0.985222)

0.9995
0.967777]

0.93883

0.961115

0.916867| 090761
0.99932| 0.999366

6 HIMFEEROT 2 OHIIRIR

V1. IEFRH
FPGA + — F T FHpleE, BUS L 72 fHIZ 7 F X
FMRFEEIND. ZOER IEET —20T7F A LH
AL, IEEECRHIE 2 72V, IEE 2 I5E OB AT IR
T2.LUTOM 6,7 ICIEFHEDEITHRZ RS

12

oa: 1 (EA:)

B8 fRIFEELZTFAET7 740

VII. - 5

SIER T 2 1 BT, IR B E, R EHE
D =D H T THEEE D, LUT R ICHIEY) © 7
IO B A T o T, EHRLEE & IFEH) T 1 B
LTRMERCHEL TV 30 TiHizOL L 7.

P E B L <, BREE S B FE 1 & 2 DA T
DEBEBL MTo TR WAICEHEZA L L.

BV AT L~DIEDZZ T LI W TIFREE 0 # &
FEECECELTIMEIIEX & L.

FPGA 0 FEicOoOWT, HARL AR ED T =+ v
A EHREL TV LEEARDOT, AL LT\wb. Matlab
OB E o HER) 7 FA IR D 0 T T2 0,
FPGA ~DHIENENTL £ - 7-.

x5 Hl{EY) ORI

B

EILE

B E

EEHE

&Y AT LAMEDEIFEL
FPGA~NDEZ

> x|O[>|0O

VI - b Yic

LSI2vyFRMCHEFTOY AT LR ZEL T,
Autoencoder IZ DWW T X Y B 2D B3 2 L S TE
7o, WA #0AIC X0, {GALER, BpaA) IR
FEDMEIZTERD > 1205, NENDOEAER
MATLAB Ty ol —va v LEERIERT 3
ZLIITERL. SR, TRTCOMEERHRAE L LT
GUI 0EM7Z EFIAFER LD v AT L% ffned <
BBEIBLREML THEZ W,

Development of Music Note Analysis and Performance System

—Music Information Processing and Integration of Autoencoders—

1t Karin Kanamaru
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
1665-1 Shii Kokuraminam-iku
Kitakyushu-shi Fukuoka, Japan
2217104@kyushu-pc.ac.jp

. IL®IC

BTRAB BT datitfas L, AEOERITKT 5
BLBRERLAMAEE L, ERERLEHDDH L TRMER
WERTHDH, Lo LITFE, HEBGIZH T 2 IEHEY
HFKIPHEDOERDOIKRES R EOBEKIC LY, FitHE
DEEILICENDRERNE T TS, 29 LIZiEIC
SHLG B < ARBFIE CII R RAY 7R tatk 78 2 n REIC
THFREOHRBELHET 5,

BARMIZIE, KB 235 & Uiz, BBRBIL A 5|
SHLRTWHEEREE VAT LOBELRLD, £
DDA — bz a—FZSH L, HKLEgE AT
T—HXELTHW, Ihadb LICHBIEREZERT D
ARG LT, COXIRAVHETIT 4 T 7258
B, BUARNOHREE N 2 BETE 5 2 LR
b,

AEFFED Y H —>OHMIX, LSI T A 2T A b
~OHELTH D, 2T A NTIET —XJEME - Hot.
B O RIENRD N TND Z b, ADE
AT BB SR O R A i U, @Y7 s 235
mERA— b a—FERBE L, ZniE, A—F
Ty a—AOINHAAREEEZ LTS E L bIC, TREE
~DOHFRG LI TE D ERMNLRATH D,

1. B

ARFZEDO BHL, FRA~OBLEZEDD I ENTE
HEE LI ORI D, FOHICA— v
a—XEIGA L, BEERGRE AT —% & LTHWY,
INEMANTTAZ L THENRERBREZFHUIUTH AT L%
HEZ LT,

FPGAR— K(ZYBO)

F—rTra—%
SDH—KT—% i HEET—4
A g H
Ah
- j] F—h — h
== — " | = = [
== =ik,
= | %

X 1. BifEDHih

XXX-X-XXXXK-XXXX-XIXXI$XXK.00 ©20XX |EEE

2" Nanami Yoneoka
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
1665-1 Shii Kokuraminam-iku
Kitakyushu-shi Fukuoka, Japan
2217132@kyushu-pc.ac.jp

WYX EH R B T8 O) B B OREZFRBT 5
7u N A TORRBEEBEL TWEN, L0 EERR
A REBET DO, AR TIEES LIS T D EEE
WE T TEDEBRT —FZBA LT, b DsGE
EIT SD 1 — FRRA T AT AT AT &, FEIC
Yefifi SN T — Z L ORI ESW T, KEAR T
PRTE SN D,
HAIZAE— I — 2 HWEERRERE L. ©7)
M —R— KD LED 74 MZXAHETHERKRD 2 o%
FAE LT, (K1)

=

a) HET—%

b) FERID AE DHAF—%

2 B

o) ¥EHO AE OHAHT—#

=

X 2. ZZ A1 O LLEEiR

A=t a—FOWRER L2 X570, HiiT —
BT 5 HEREWEEI 6 U CRILEEZ i U, fiftr - B
EiTo7-, X 21X, #AiT —% ., FHEA%OET
TR EZR LT DT, FEHOMEEHETICHEET
x5, M2() b, MABGELEETT — X 123\ T
WA Z LMY L BT IO ERE S LB LR E
NAEL7ZZ ERBIES T,
ok olT, FERLEWMIFEERA UIARFEIL,
B & IR O E CRBIROVERENS IR TX
%o

. SRS

BR%E U 72 1 28 SR AR OIS SRRl DV T, X3
R LT, AREEBIIET VBMOFY A A2 BAL TR
. FPGA AR— R, 77 WA —F—., LED #HM722
FoaryR—x2 NG LTWS,

TR DFREFTIZ 3D CAD V7 F AW (X 4 5

By, 729U 0E 3D 7Y v I\&fﬁ iof%ﬁf%ﬁo
Too SEEIX. AT ST WS THREET

5mnﬁﬁﬂﬁéﬁﬁ$f\8®%ﬁﬁ£éh1wé
MERFEHNCHER TE 5, LED AR ISR T il &
L., WERMEREEITo T,

LED ~DATMEEIZ Y V /A RiZbiignseTh 5 7=
O, A IS AN ATRETH D, =
AT L0 B 2R BIOMRRIC E 63, BB
RUATAE L TOREREERBIBNNEINTED
ZENTRBENT, T OFIKTEERER VAT A,
ERHABIL T TR E =T A A2 My B~
b IS D,

B4 3. BBk L 7 TR 1 A5

HBUPE L 7= LED B8 O FIC LED 22 E 4 57-9
\ZER S DAL & IEREIZRET L. §REF L7z, LED EAR D
XD H 1 E T I 2 —h—ER%2X
5. X6 (25”77,

=

4. CAD 33X

Vio

- 5 J

e = nn -

D bl - 1905
e #‘ L OE T

.| _l+,

kA Sl g

i fin o @ e

o
T

IEFRECEE

Ehl.Zl

X 5. LED E:AREIKX

14

WVCC

-+
VEC Lo g
oo Y SPK+ @(]
+ 2 1GND SPK+
2+ spi LB SP
L2 I s |
10k
PAMEDLZ
7

GND

X 6. 7 rftE R e— b —ERERN

V. il E

A. IR

SRIOBAVEIZH 7= > T LI BIRBREE 2 LU FIOR
7
« FPGA " — K (Field-Programmable Gate Array)
ZyboZT7(27-020)
7 N7
vivado 2022. 2
Xilinx Vitis 2022.2
MATLAB R2021b
tinkerCAD
« MicroSD 1 — K

B. #il>x 74

ERETHREINT VAT AE, SDI— R bfita S
NDEET —Z SN TERT—F 24k L, 20
HEEZWREETDILOTHD, ZOVAT AL, AE &
JIGALT, BT — 26 F 0L RS2,
NS DOERE AW T LED Fos & FAEH A2 EHR T
%, (X 758)

YEal—vay sbh— K

- HERE Gl - EENEED
T L—R5—)L =HER

- EEOYA X

- BTEA L ORE

FPGA

cF— I a—STEHFHR
oAy THRLE-ER/D
BiEHEAE—h—IZHA
- LEDIZhigh. low% 71

X 7. LB DI

¥ 7~. FPGA (Field-Programmable Gate Array) D
A& 812~k d, FPGA DRk, £ B3 CPU, A B2
F—bhxra—FoO/ N~ Ky =TWUHEE{TH IP TH
TAAEILED & FICE#T HAEIP ThDH, DI
WL O T vy 2R 5N I NbIEENEND 1P
BN ZADEENT I > TS, AE OFBEESS T,

TR =7 B A — I — KON LED ~D H 34y
ZN— R =7 T3 LT,

procesaing_aysem?_0

waoro acaic ZYR| O‘

X 8. FPGA DHERRX

IIHERLLTBIEIP D7 a v/ MErd, BHIE

IP 1%, vivado Offi5 1P {ERH%EE Create a new
AXI4 peripheral] Z3&ER L., AXI4 DA X —T = —
ZHREILT 7 4L b AXT4 Lite, Slave, 32 B K
g, LIOAZEA TR L, 8 5ICNICAE
Module music ZiBA0L 7=,
Module music TIZATI SN CLK 3 E L., AE—7%

—ICHNT BRI E BT D, F72. slv_regd &2
LT INDODOANT—H % &2, *hk L7 E R
$%, LED A— h 2RI LT 5,

music_ip_v1 0

music_ip_vl_0_S00_AXI

= IN[3:0

SP Sr

sr

AXI4_Lite [~33

music
LED M[24:0] .
LLD M[24:0] _M[24:01) |LED M[24:0]

CLK CLK

X9 HIEIPDTry 7K
VRRITLIEN—= R =T YA XeK 1ITFRT,

BRI N—FR=TY AR

Resource | Utilization | Available | Utilization
LUT 4099 53200 7.70
LUTRAM 62 17400 0. 36
FF 4206 106400 3.95
BRAM 2.50 140 1.79
DSP 72 220 32.73
10 12 125 9. 60
BUFG 1 32 3.13

Fio, AEIFEBRICE VIENTZ AE OEFILEK 10 (1T

T, ASE. HAEE 63X63(3969) THIRH BT 128
N5 2 N T,

15

ANE
3969

3969
&

shffE
128

O

w ‘

‘%HH

\

/

{}’ ‘@

| %E@ﬁ%ﬁ] SBEO, 015

X 10. AE &5V

C. FIREAEIL & R

AEERE L7= B 1E TP @ Module music TlEAeil i@
0 OF BRI U7z J8 52 fERR@LED (2 H 1, o —
DOENEEIT>TWD, AEa—FE2EIZHIZ-T
2ELEBIDa— FEE5R L, 325 CIE
2 A5 64kHz (272> TN =728 Zybo DJE
W CTH D 125MHz 75 64kHz ~2yE =17 - 7=,

B A AT 7o DI BRI R IR AT — 2 L 72 B
e L B O BMR A E 2 1R, FEoT oS 0)E
WL 440Hz THY . ZD 1 F 7 X —TK T T

LD I =220X2" (n/12) TKHDH Z LN T

x5, £, ilb%w@%ﬁ%ﬂméo%%ﬁl
72— 7mwﬁ RN OMIZ7e D 1
7 B — TR RN EICR D,

it\ﬁﬁ%fﬁﬁmaﬁﬁ£®%%®%%%%zf
W Z ML BEOREIEZRTEREELIER L T D,

AT 16 BEHFE2—20E LTEZ, 0.25 & L
oo B2DXHITHEEARD LA A, TEEZID
DR HCE DT, O LA EST 2 L TEFD
RIEHHESTDHZ ENAREIC D, Hlz2iE 8 s
LI EH 2y THD Z EMnD H, 45T/ L
MBS THDZ ENBMEL, 2 5EMFTEE 8 ES DT
8 [FIFEONHH L Cuv5, Module music OFERX %X

1112559,

#2. BELIET DA (2]

BHD | [PERERD 5EL BEl [Ao9—T8

) ERER (CLK= DS |NEEDRE

o S 220 290.91 145 |72

[t S# [233.08 [274.58 [137 o8

2 = 246,94 259,17 129 |65 (si)

E I [261.63 244,62 122(do)[61 (octdo)

la k# [277.18 230.9 115 |57

5 L |293.66 217.94 199 Toq foctre)
(re)

5 L# [311.13 205.7 102 |51

7 = 32063 194.16 %7 l4g toctmi)
(mi)
92

8 77 |349.23 183.26 46 (octfa)
(fa)

27

9 77 |369.99 172.98 86 43
82

10 v 392 163.27 41 (octso)
(so)

11 [v# 153 154.11 77 38

12 S 440 145.45 73 36
(ra)

FTERT —TNCEROACT 4 IR DT —F %
Aﬂf%<o:n@% LOKEEZ LTS, ko

LBORSOR/NENTHD 0.25s ZELI2ZDTF—7
/1/7b>f57>*5' BathrH L, AR U
(musicosc) IZHEMEART —X L LTHZD, BT
MEAEESED 2 & TEROEREAED T v
S AN I > TN B,
inclk 1%, 64kHz 7 1 v 7 % 16000 438 LT, 0.25s
(4Hz) DEA I T HAE->T W5, cts025 1%, HHE
T—TNDT RVAEEL D 5T, 4Hz TEMET
5. cts025 OHIERIEX, T—7 /b melody @7 L
A2, 0.26s TEIICA 7 U Ay NTHHERIC AR
STW5b, BET—7/V melody ®7 KL A%, 0.25s
TEICENT ATD, HI1D outmusic HRIEED Z A
VI TCEET D

BTN
melody
[
ots026 80 82 | outmusic
s CEENE
-sET | @ n Bl @
EEPD n B
3

BRERDY VS
mus icout

musicflg mout

outnusic
outnus ic@AEE T

el
hry eI EE
musicflg = 1

LK

olk

s025(dHz)

clBH | (Bdkelk)

inclk
1600058

albdk
(BdkhHze k)

X 11.Module music MOHERLK

TR v v # O musicose 1%, outmusic DfEIZ X
ST, WUV MNTHENAERRETH D, 64klHz DY
w7 D4k E outmusic DfEIZ L > TEZDHZ &
T, AU N ORBEEICE N E ST T, EROM
BEHEEEV LTS,
FEOHNOFEZK 12 18T, FlZIET—7 Vol
NT OYE . outmusic=73 {272V, I 7 % musicosc
XT3 ED T T ZIT72 D, musicose DS 0 IZ78 o TR
IZmusicflg 28 112720 . F VX 73 &Iz 1 [A] High
2725, ZivaE 20T 572 mout 1% 146 A5 D JH
Hc2 . ZJOBEHMOL 19 ET 2 —7 1 50%D
HHED AR H) mout 12725,
mout [FAE—H—IZHRINTWNDHTH, ZDOIRED
BV Z 25, £727 —7/VOfED Br OREIX

outmusic A 01272 A7 musicflg 1L 1Z High 1272
D, FIRLRV, ZAUTFTREIRSF & R C&FENC 2 - T
WD,
0. 25sec 0. 25sec 0. 25sec
outmisic ¥ v & X 5 1 X B 0 X
82@[I@ngh T3@EIz IIEIngh

wwre (L JUUUIUL L

mout

64kHz 164185 > XA 64kHz 1465 DK

X 12. EoHEHE

16

IR

AWFFEOE 4 2 Wit Tk, AE (ZRTALEE S u7-mEig
T —H EMAET D201, LAT O E{GALE L 3 156
b,

O BEXE
TUXNEBRT —Z BT HEOERNE, BE 0
DOEMET, HE 1 TRIND LI ICKEIEEIEDL 2
LT, BN S0k EmT L, BoEE T
BEZ2 R ZTH=DIFERHEND,

D.

@ JL—RA— VAL
AT ENDHFEEBRIL, RENCE) 7 ai2h,
L DGEN T —HlBE T +—~< v N TtAAEN
Do TNBIZT L—RAFr— VA AT Z & T,
BT — X%/ 7 vl L, AEET VBN
LTVWERICHE—T 5,

@ YA R

BT — 2 O A Xaf/hd o LickoT, 7
— X DD B Z S L, ZhRA 51 E 2 ZE5
THLODOHEZIT),

V. FEE

A ELEAT

AREBRTIX, MATLABZ W CHEET — & Ztlc A)
{4 2N IEHELZ ﬁﬁf%fwé#@m#é F7o. B
WCHBLCE G600, FHEROMEZ AW T
W%T%FfﬁrM%ﬁ5o$Wﬂ@kbf\ﬂ%T
— X2 AN T —FZICHEREKER, A XOF%, 71—
AR — VB EIT o T2, R LIz — # % K131
IR, ANT —HIZHAT — 2 LRICT—X 2L

72
SEEEEE

P13, BEHT — & OBk

B. iR
ERICE > THELONERE, BENT—2 LI L

—=

TR LIE14TIE, 28130, 1, 228 03500 THE
HEIToTBY, AR ENTZEBORELE S PHERS

N5, F-FET 28R COEHRIS YR TSI 752K
151" d, 2077 7%, #iT —% & I mg oA
ZZEARLTEY, ftmo=7 —HER0a53<IFEE
fife S 3T, X5 Tl km e = 7 — 34925, 8I27

27,

EEEEEE8EE

JEpaupigigNpl EEEEEEEE

X14. EBE R

A
| 27
268
266
264
262

26

E—JIH

258

2586

254

499.95 500

200 250 \ 99.9

FE D%

XI15. H A HE# & HAiT — % & DiRZ=E]

ZOMBEIL. AT —Z OB L THFE RN X
TEBHZZLER-NEEIND, FZ T, FHRETITS
TR L CHEEREZITV., WEINHEREZXI6T
KT,

SR
[X]16. SZBHER2

BA161E, 8 #130. 02, = RIHUII500 CHAE 21T
ST, MRTHE, DRVBGEITIA NN, WD
IMORBZERBRELRAZ T OND, FFZ, RERR
2ODWENR U FEEZRLTWNDZ L0, SHNES
LRGIREBRFE->TWDE, ZOERKE LT, HED
B E 2 D T2 DO+ IR BN T & TR 2
ER—KELTEZLND, ZOMBEICHNT 57z
W, FEHEBOFELZFHEREHE L=, TO%k, iRty
KT 77 7% PN OEERE L, REITE R
0.015, F=H X900 CHBE 2175 Z & T, #HEhi7T —#
WHEWZIEERL L2, REXITTRT, £7-. KI8TIX
BB T — K67 > TR Y . W o EER X
DERENBD LTWD Z L DR TE 5,

SEEEELE
EEEEE

17, REFERS

==

I HIT, RN FE R, FEEHEE v TCePU
THEEZITV., MR AZMATLABICIR T = & OB R %
B) Ui 2 K19 oR T,

17

T
400

=3

300

200 |

=
2
=]

BE—JIH
g

-100

400‘ bBB 899.985 899.99 899.995 900

438 [
X18. HAE# & HifiT —& & DFRE2

0 100 200 300

MR 9B &, CPUNTHHEENT — & &Pl L 7= i s
HAOTETWBEZ RS0 D,

B BEd E
CTT
@)

X|19. CPUNODHEERE

INHORRNS, AT —X L HT — % Bk b
HRLLCWDREDT — X 23 L, £ EFPGATR—
RICEETHZLE T, F—FEBELTAE—D—X
LEDZEDH)T /34 RZBHOT — X % IEHEICEH T
XL L EMR LT,

VI A—tZva—Xo74+7— &

F—ro o a—FORFHITHTZY . Level 1OFRE
THHIXIT MY w7 ADNNE — B EBEIZL
Too BARBYIZIZ, KBIZRT X HIC, ANELHh)E
EENENY—FEL, HlEEZ2/, —FETH
TIVIeRER R LT,

7277 L. ADEBI63X63E 7 B THSDZ L h
L, AL ED) — REE3,969& L, Z 0¥
ERITE VNS LOFE L, kv, /M
JED2 /) — RN& =640l DEE T, KL 55
BIER~D~ v B T EFEITE D,

ZDEH Y v TV THEEIIR Ry N T — 7 fERL
I, BELWENES THD ., EERTEIEFRD
il & PRI 5 ekt &2 i 2 TV B,

441EE 2EH 1EE 1EE 268 4410
3961 9 0 0| o9 3961
3962| 10 1 1| 10| |[3es2
3963| |11 2 sz | 1| |30e3
3964 | |12 5 © g | 12| |30
3065 '+4 13 4 4| 13 |-++|3965
3966| |14 5 5| 14| |3986
3967| |15 g s g | 15| |3%67
3968| |16 7 2| 16| 3088
69| (17 8) - 8| 17| |399

120, /NEMEFPCATD 7 4 7 — RiLs

VII. 7€ =LK A v b

Afa DRI L, Hifg L FOMOB LWEH LA 7 =X
Az L, AEOIS %2 ST 5 L3k, HH
BT DALEA O Al REME 2 AT 5 &) AR A T
H5, FERMICIE, ZoHiFoRBIZL Y 22EEO
HEWBmNFEBRINDL L D, Zhud, Efife i
WA T o RK~D LD LRIFC, = PV=
TV TETOENT VAT 4 BT 4 OFES &V
I FREOBRIZ L 2R 0 155,

VIIl.EBb Y I

AW ClE, BEFEGE AR, T2 TE S
Mo h 7 —<cd /-, MATLABTY S 2l —3 g %
TR SR L F— h o a— X DEFE T A
— B EEET S E L HICFPGADTEY 2 — AERR & 1T -
Too Fio, AT —2 BEETT — X I EWEBRT — X
EERTEDZ E2MR LT, TOERINZT —X
T, ANEBT =21 n CinEa A Y — 7 — L LEDIZ
H19 2 Z ERER ST,

777U, A TII—EIZ—2D% Lt AL T
HAOTERWHIRNTFET 5, SHOBEE LT, %
KA AN T —2 L LT, A THDEEOE
P —oFT oW TED L) RN AZERTHZ LN
LEND,

Fio. OGS E KD 72012, ARNIRCm/E
YA DT 82 FEfE LI=08, T — 2 03w 2
LIZE D FENERBNEERCHND, 5%, B0
HEEO LT &, HEiT—2 b, WO
MRETZ EIFAHATHD, £0D, WEOEHEL
W T 728 - 2 FER T L 3 XA OKEIERE L 72
Do

18

%% UK

[1] LSI Design Contest. (2023). The 26th LSI Design
Contest in Okinawa. Retrieved January 10, 2023, from
http://www. Isi-contest. com/

[2] FHAES. +EHOFMEIORECET DL,
http://www. art. hyogo—u. ac. jp/hrsuzuki/students/peco99. pdf

[3] fex AR, (2003). AT —LO®IE [20034:1
A BftECPLDEEM] BAEHI/EL R — . Retrieved from
https://www. cqpub. co. jp/dwm/turnout/200301/03/

http://www.lsi-contest.com/

Design and implementation of an assisted wayfinding support system using
Braille blocks
— Improved mobility assistance and spatial awareness through integration of smart
technologies—

1t Keita Yamada
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
1665-1 Shii Kokuraminami-ku
Kitakyuushuu-shi Fukuoka, Japan
2217129@kyushu-pc.ac.jp

. IL®IC

AW T, HRESEOBE R EZ BN & L2
PBHFEICE D LA TE, R RS 1 IR EIR I A2 2 T
2B ENEL . ZOMBEOIERNKD 5L TS,

FITCRFT7uy s EFALZEEERH Ry b
BRARET S, KAVATAIEMOET 0y 7 |
BETTH/NMIaR Y T, A ZIZE > TR
e A LR 5 BSR4 BT 5, BEEDR MR
W7 —CHERFICBEE2RT L, ekl
BoRE L 7= e 5 L T B,

ZOXHIZ, FRILFEENTFZOMEIZL - T,
HREESR O AN LB XEE Hig T AF2E1L.
EWHEESEREZA LTV D,

A oy

K1 ZRrLizady ME, BiFER CIIESEREE B
e lLiera b2 A7 ThHd, AuRy M MATLAB
FCEBLEATE T 0y s 0L EETARETHY . E
BRIE FCORMEZHEE LD O TR,

WEMEL LT, BEORT 7 a vy 7 TOEITEAHE
LT DEEOR Y NORBENPMLERARTHD, FEA
T L TORE LT EITHREEMET D Z T, 1T
O THRRESE OBEN 2 XETE H2EMAMNR T AT A
PERTEDINLTH D,

ZDOX DB AR ST D Z LT, ik
THFICBITAANIEOERIISLICEEDL LB X
HND,

K 1. vRy hDOSE

XXX-X-XXXXK-XXXX-XIXXI$XXK.00 ©20XX |EEE

2" Mako Fukuda
Kyusyu Politechnic College
Department of Electronics and
Information Tecnology
1665-1 Shii Kokuraminami-ku
Kitakyuushuu-shi Fukuoka, Japa
2217118@kyushu-pc.ac.jp

. ¥ 27 LS

ARy NORTFTT a7 BB L OETTHIEO 7=
DI, A—bzra—XEERHLET VI ZALEFH
FH L7z, EARBYIZIZ, USB B A T 76 S L 7= B i]
BEANNT—2 L LA — b ra—FIcitihd 5,
F— bz a—FF, FRHCFEE IS AT —
DEETT — 2 & NG % bl U, S5O FEE % 5
T 5,

WNT, A—bzra—XOHNEICESNT, =
ANy b OEITHERRHEE & o T HIENE 5 &2 ARk
o ZO—EOWMIIZE T, Ry MILAFET 0
v 7 R LN b BEET 2RI TE 5,

ZOXIIT, WM LTFORSHEMEZTRD ALd Z &
T, fAREEZOBIXE L AT 20EEl - FEAL
DR TE D,

7 R FPGA
H X T CHgRERE BRT — 225

<Efg > F—bTrva—%
'7V—Z7—me:>$%@Q¢%%wé
- 1, e P
B N LEDSAT

ARy b

FPGADH AIZ &) a—RFET
LY HIMEEIRET B &
TH—HEY LEDH ELT

X 2. > AT LERR K

AR AT AORER A 2 1R, BB
UFD3->THD,

1) g A F7EEUSB 4 A 712 X 0 B O Wi T — # % 8
535,

2) A — b a—2 K BFE ATTEE D ST
B — o DR & AT O,

3Ry MIEE: 4 — b= a—ZOH kD
. vBRy hOETHIEAETT S,

NG 35D VR—F FPEEESTHZ LT, A
T AN B EITHIE E TO—HEOFRLH N EBL S
N, RFE7 8y 7 bz BRETIRER Y AT LS
T&E D, AT AT DERITHLRNE & UL HERT
BY., AROBREPMFFTE D,

QA — bz a—FON#EEITH T o v
@F—F &+ 50D T o vy
@FPGA NERDT /3w 7 D SW,BIN DT &1 v 7
@DFPGA NERDT /N> 7 FHD LED D7 vt 7
GUART BIEZATH 720D T v

X 3. aRy hDY AT AR

A. [EIRA)5

USB 11 A 7 /B EUS L7=|ifg1Zxf L C. Raspberry
Pi ECRIALE L LT 2 i b & BigfE N2 LT b,
THICEY, BEOA— P a =T DA
T 2Rk L, Rt 0% b 2 M- T 5,

BAREIZIE, 2 BRI L > CEFEHO ALY
H UL EEHE/NT K - TUEE 2l B & KT 5,
INLOFRMEICEY, A— bz a—FpFEP A
— R EFATHE M ERY/FFTX 5,

TOL IR AT = L T, BHDH D
MZGAT S AT A ETH, R RE ERTX
%, BILEESEECO TIITY V) — R HREE TOgh=R
HO72385k 7 L2 X‘AT%%&Cﬁﬁ“G&)éO

L] LE

i

(b) —fEfb 4
X 4. A 77

20

B. LR

Raspberry Pi |2 X 2 RiLeith, Wifg7 — & IX UART
BIERH T FPGA R — NIZEE &N D, FPGA LA —
feya—FRNZOmBEE AT E L TEFNE—2D
kA EITT D,

F—hrxra—FIEROFEICESE, AE#
DD RTFOREEZFHN L, EAEE 1L e & ol
EAERT D, ZNHITREICE—ZFHIEES L LT
Hhsns,

BB 5, 6IRLIEA— b a—F oG L
BF— g3, 7Y XAOKRIED =512 MATLAB |
TER LT b DO TH D, RFEERE~OFIERFITIL,
FPGA £ CRIARDFE LRI 2 EB T 50 E R B
2o

ZOEDITHEUNABE & EIT D LT, MAIAA
F oSS A DREMEZ DS UT- 2RI AT ATRE & 72
Do

a4 L A A)

B 5. A7 —24

(I R R R

K6 KT —X%

ZEMAEEBRE L, Eor I bEEYEZBI LIS E
DEGUE ILHERE 2 SRIE LT,

HIRE—%

Em‘wr\\am

N

Zybo

7

(a) & B

ND

iz jgg

(b) &2 H— 7Y — A
7. HAE]

BARIZIE, B CTHEEWRE D LR T,
Ry NOETHTHo THEBICE—X ZEIEXE
Do MATTYP—IZLDEFRT 7 — e L, =2—H%
ICHEBEME 21T 9, ZAUC L 0 SR A RRITH <
ZEMTXB,

F—ZHIEIERE & o — o TR 7
DEHITEE LT, ZD KD REE T e E
ANiZ. ERLEEZEX ARV EOERZETH D, /N—
Fo=7 &Y 7 b7 OlE»bEZEMMEELXD
LT, BHEEOEWY AT LEEERTE D,

N— vz T

F—trxmra—For—RKuoT7TEECHED, A
HE9 s —F, g2 7 —F, B9/ — Rk
AAEE % FPGA BITHEEE L=, ZHIZ 54X54 HFED 2
AL AT i % 535 L Citke 3% 2 & T, MATLAB EC
HEH L 72 100 Jg g T 7 L & RIS OFRRR LB 2 28]
T&E 5%,

o7 Ta—FIZEY . /I FPGA & W5
TH, —~HOEE N N—RFU =7 THEETSHZ L3AHE
L, ZHICEY ., VT NI =T OLRDEE &k
L CALBEE O Kig 7 m B2 XKD Z LN Tx b,

Zo XSz, FIHRERANAN—R T =7 U YV — AT
U7-heii bakatid, MAGAI Y AT AR FHZ B T
OTHEETHD, "Ny =T Y7 =T OWiH
HIZRFEEEDS . BRI OmPERER U AT L EBLOHE L
25,

C.

324EE 2E8 1E8 1EE 288 324E8
0 =N
2908 allo | O—o]||e 3961
2909 w1+ O o 3962
Y H
2910 |2 |0 amge A 2] 11 3963
2911 12| 3| D 5| |12 3964
2912 |-~ [13 4 | 4 13 | ==+ | 3965
2913 14| 5 | — 5| |14 3966
2914 15| 6 6| |15 3967
Y
2015 16| | 7 L J 7| 118 3968
2916 17|] 8 | —L O8] |17 3969

8. — Ky x=71k

. £k

A ELRNE

AWFSETIE, Raspberry Pi 2 & 5 WifgRTALEL L& |
FPGA LD A — b a— 2 K5 85585 « HI5 & #
HEDEDHZ LT, uRy hOBEFREETHIEZFZI L
7.

F— bz a—FOT7T NI X AFES - WREIET.
MATLAB ETHOY I ab—2 a3 itk WiTol-, HED
BIALER & U CH A A0 2 fEfb & i U, T D A
i L72, W, X 9(a) (b) (R B &5k &

21

BRT B 24—V BHEIT—4 & LTHEEEIT-
oo THUHOHEEIT — X%, EEBIZADET e v
DGR « YA R EABAEAL L THERR L 7=,

Z DX)\ THEYI R RTLER & BT — 2 OREEIC &
0. EEREECOMTRR - EITHIE A EVRE CEE
T&7, Y7 b7 En—Fux7 ORI
B, BN AT ABRBOF L 725,

(b) & 1k
4 9. BT — & Witk

(a) ELHR

F—hxra—FO%E EFHMEIELL T O FIATHEm L
776
O #HbiT—4% BIKE AT LIZHEIS, TD/ % —
DNIEREICTFEL - &5 D& Rl

T — 2 I WA — o wER S %2, &b
TWHEET — 2 I - ~ vy BV I TE L0 %R
filli,

ZDORE, ATIRE =B R IO L N D E R A
HiT,
Ubo7atvAxz2@mL, 4A— bz a—Z O ke
BEEBMICGHE L, RTA—FF a—= T %475
7o BAAT— % OB & PULIEREO R 2 IR 5
ZLT. ERETCTOONRR NREENTREL 72 D,

B. EhiigE

X 10 X 111%, #Hiir—4 &4 — bz a—&2o
HIE R A2 L2 b D TH D, mODOHIIFERT
X, EE SRR OHERT — 2 MRS LR R
—VBERESNTEY, BROW A EBEBE T T\
Motz, T, FELIZFEEORTTE N E KT
HHZENFRERELTEZLND,

SRR e R TE R & R R EE T —
AOPWEHICNFELTCLEVRNLTHD, FIT
W 2 WONHI 5 = & T, #AhiT — # & IEREIC
HE T Z LR END,

TOXDICHENT —HZ L DOIHRRE AR K L2208
HETNEZHREL W 70 AN, F— bz a—
IR S TR 2 — R B W TCIHERICEETH 5,

i

X 10. ZHRlT — 4

)

(a)1 B H OfE R

P T]

(b) 2 B H D% R
B 11 8% T — 4

Wiz, FEO2=y NMEERO L THPE 217
e, MR REREGEIIA OGN0 oT, £
THFEOWFKRREE=X Y T T 5720, FEED
HRB VT 7 MR L= & 2 A, BEENIR-E PR
ITWTHERE L CWAZ ENHBA LTz, 2oz Ennb,
BUEDOFHEN /NS, BENH SR/MEES g
FEEPETL NS, DENVFEENRARLELTND D
EMEZLND, K121ZK 11 TRLULET—Z DO%E
HeRE %2 /R,

— . s
100 800 90 1000

X 12. FEHEROITZ 7
FTCHFEREBOEICER L CESE 2R
ZA, BI3IRT Xk 9z 2 FEEEOEET T — X A

&

PRIZERR SRR D X2 RoTz, ZHC
XV EY) e FEHEOREIC L > THOOH S E R AT
BETHD I EamR L,

i

X 13. 2 /3% — 2 O EGER

FHEBEHEMS AR, K13OL S ICTHMOH T
NELND X oTz, & BITHE OIAH R % e
BT D120, FEHEOHRE T 7 %X 14 (2T, 1H]
HOFPEFREE iR LT, ABENITRZESIOR L 01245
WTWDZEPMERTE D,

22

PLEDS | @72 RX—=RT A= FFHEIZ L - T,
A= hZra—ENETFANY =B L. BROH
NEARTELZ ENEIFENT,

10 | =

0 —
0 100 200 300 40 500

M 14. S#EREWIMO 7 Z 7

S A
\sou 1000

AT — 2 T BN EYICE LN D Z L Ak
BULItE, ANE— U BERMSEDLZ L TH— b
T a—ZORAEREZFHE L7z, K 15 12R7 X9
(2. BT — & LTI D B e B D I A T
JICATIT =2 L LTz T,

ZORER, K16 (T HIRO X Sz, —Ho
SRR IO N ERTES, FA— oo
— X DOPALERRICIEARH B Z ERbhrolz, TDZ
END, HT — X OFESCEE I DICHEMEES 2
& T REIDANS)RE — Ak DN - Fefiit %
mOLNbHEEZLND,

1

esssee
ey

Hit

X 15. A5 —#

Bl EEEEE B

X 16. Ko —#

333
332
> > o 4

HARE R AT MICT L2 & 2 A, #HbiliT — &% o
WIZIEFEICHBR SN TWA b D &, o - ARk
ENTWDEDONRIEL TV,

ZORRIE, HEiT— X BEROENRRELTND Z
LiZhdrEEBEZLND, HET —& BV IREET
X, BT NABNRE = DS E I FETE T
TRUVNATRETED BV,

Z T, HET— X O E BEABINL CHEE 2
1792 & T, BT ANRANY = OIRIEVF B Z 6
N5 LR, BELUREBIEENGOND Z &N
W Ens, +oRBEiT —% Oty & T hickEs<
2R P bEREm Lokl B EE X T,

mu*ﬁ
AL

LA Ll d L)
17 0 LI #bhi 7 — &

ki i

%W%WWW%@

HORER NS, B2 R T 2 MO 8537 —
DAFEHICHE SN TWD Z LB MERTE 2, ZOF
K& LT, #hir—Z BoEcffnt— bz a—
P EIRRE L 72 0 . ABMEREDMR T L 7= AT R eSS
B Y (W

FITHRE LT, FEHEZETSEDHZ L THS
Brikii-, FERET L LICX0BREALEE%
PHI L. REDO AT HEEEE R Y B2 &%
Ho7z,

B VR A R

X 19. #E%T—X
FERABURMEICTTSZ T, K191 T &
5&5%@&ﬁ%ﬁﬁf%éi9 ot

o [
180

100
100
100
100
1. hHE -

FEE
0.01
0.01
0.02
0.02
0.01

:—AZJZXODBT,]'K

1[HH
2 [A1H
3 [HH
4 [A1H
5[=H

WO EBERNE LN, ZREFHLY T
NEA LEBREA— b a—X L, aRy FEET
/DL ERLT,

L, ZELTCERKHDEEDLZ ENT
ST, FEEREOFMEZESE THRIN,
B bighotz,

IRV, U T E A N CEGRZ TG LB, BEidT 5

WCEVBL SHZEL., BEgO fE{ED EF< 0
STELT, ANEBEZHHTE TR LiZh-o
77o EFLWBEA L2, D ULNEEZT LT
T, A EINREDLYARKETIERWEZAEICRD
08 EFRELS IEETE W #%#o%o

SX TR
AR

I T, ML ZIEREICAT O 2D EEVNSY ¢
T%E@EQAEQEL\EUET/F®%ﬁ%ﬁ&
o

%@F% X4 DX bz EFR A sE3
IR L=, E£7-. USB 4 A 7 CHEitg 2 BET %
fmfiAkaTWEh%ﬁﬁfmfﬁbéﬁﬂK
ESEHZ LT, HBREGEZAL—XITZAH LD
Iz L7,
Lo, vedRy MIETLEo7z, A— bz
— X OHNFERE R THD E. ANT =2 DHEITTH

23

DI LT — #1345 1k Lk S,
< W TWRhoTz,
JFIRE LTE A ik, #AiT —4% %A ERomiE
DEEF AT TNDHZ Lol HEBIZLEZZ & T,

k28 b

HEOF ETIRHBINTE RNz, HifiT—2 2%
TS AZ LiZLT,

20. 258 1% D 2 fifi 7 — 4

BT — 2 2 20 IR 9, ZHUL UART @R OT —
X CThDH, ZOHET —H % MATLAB THAFE L[F T
FECTYIa2b—varl, vhy METERRT,
ZORER, EFA— b a— 2 CEBHERINT
. nRy EETSEDL I ENTE,
A2 - FEREOMEEE 2 17T,

i) =] R R
150 0.0015
2 2. Bk hEE - FEROME
V. 8bbic
AW OEES T 1X, HWREEEOBEELE T 7

v YT M EEEBTIHEMNOMB LD, SF
IXEBRE FCli ez nTrny 7 ekt Lz
23, 3 BESEITHIE O AR X I A7
MNB,

BET7 a7 ORIRR#E L OETLV— NEEDT
AT ZNFPHERE . 77 AF v —iBakOk g
R L Wo T Z 27 ~DISHANYEFE X 5, £,
R (b~ B2 ESE 5 2 LT, A TOR]
AL REE 22D,

ULy s . FERICiT CUL T OS2 dE - ¥k
%Téﬂ%#&)é

115 OB EITEMIC I T2 —F OB F R M
THBMHIEL STV, B A 50k v+

—ICEVHEIG BB L TV D AR L, BHER

WCETZHEATED L0127 5,

MRIHBREERC LV BUSIRIC T SE EL, &
WMERENANLIE & 72D, T — Z YRR ONN & I %
DFETHAR MEEZH ESE5,

EBEORTT vy 7 LBIMREE COMGES A5 Th

Do Gl EMEShRA RBREE T COFMBNLEL 25,

% 3Lk
(2023).

Retrieved January 10,
http://www. Isi-contest. com/

[1] LSI Design Contest.
Contest in Okinawa.

The 26th LSI Design

2023, from

Auto Encoder = A3 U 7= EPEE D H 5!

Signature Stamp Identification using Auto Encoder

Team: Black Russian

Yume Nagata

Department of Artificial Intelligence

Kyushu Institute of Technology

nagata.yume269@mail kyutech.jp

1. Introduction
HARDOZHIc BTk, A Eoiks
3T, EfE, HEIE. EEREOKA
735510 CHISE (signature stamp) 2SEE T
Hb, Zo7uy s FTE, WAL
D ERT — & L& T — %<, BT
I AL HIES 2 LSI 794 v % BRI %,

HW: GIGASOC
TRMINAL
AMD Zynq UltraScale+

INPUT MPSOC OuTPUT

= Al

CPU AJE
MEMORY ——

Figure 1 Image of System

2. Autoencoder
K AT LTlE, BEWAEHOFED—D
T® % Autoencoder(AE) #H L 7=,
Sl FHRMEARES AV T T %
Bi <7z @12, ReLU B#Cid 7 < Satlin B4
B xEH W7,

0, x<0
f(x) =14x, 0<x<1 (D
1, x>1

F/2. T a—x—oiEH BRI IX

Sigmoid BH%1(2) %, FRZEBIEIC I
B & VT2,

24

1
) = 1= @
1 n
f@ =3 0= ° ©)

3. Development environment
A. PC environment for compilation
i. Ubuntu 18.04.6 LTS
1. Vivado 2022.2 / Xilinx Vitis 2022.2
B. PC environment for IP creation
i. Windows 11
ii. MATLAB 2021b
C. FPGA
i. DIGILENT #:# Zybo Z7-10
(ZYNQ-7010 Development Board)

Figure 2 Zybo Z7-10
ii. Gigafirm #1:# GIGASOC

U

S

X .

 Figure3 GIGASOC

4. System overview

A. How the system works

256 * 256=

65536

LLLLLL

Figure 5 Training Image
vlicte s s I OEiRZ AT L.
AE %278 X ¢ Tk (Figure 5), Z D%
. FEEE D OBEL, FEEADE
BLANATRAERET 5,

Learned’

256 * 256=

error

Figure 7 Target Image

ZDth, =7y b Ll HEHRER L
X 51T AE T AT T % (Figure 7), & D
T, SR EHG L 2 EEADED LN
ATAZMAVWEZ L LT 5, ZORRICY
RAEZIGT 5,

BT — 2 OFED» L L NIFHED
THZ 5% ZBEICEES 5, £—7 v b
DR AT L 7= DFRAEDEI, [F—
DN DHES T H ILRIE % 2 75\,
Lol R 2 HEEOHKREZ A s Lk
AR OEE#EATLE S 2o, HIE
23H[RE & 72 5 (Figure 4),

25

10 Error vs. Epoch 2, A&

x bottom 5%

0.5

o 100 200 300 400 500 600 700 800 90¢ 1000

Epoch

Figure 4 Error vs. Epoch

B. Inside the FPGA
SR X =7y D FPGA DY Y — A%
#i 2. Encoder #5r DfTHIEHE 21T 5 1P
UL, Tk FPGA IcEEEL 72,
i. Zybo Z7-10

Figure 6 Zybo Z7-10 Block Design

¥4 FARDORES I Zybo 27-10 %
WT ¥ AT LDIERK % AT - 72 (Figure
6). Z® FPGA O¥5{y. DSP ASA
80 fiil & I IChin 72, 4 AN DAT
SIEHE 2179 TP Z{EK L. ZhzHw
T FPGA WHEEDIER % 1T - 72,
1. GIGASOC

L ZNG™

Figure 8 GIGASOC Block Design
Zybo Tl3 ¥ 27 L D FEITICHH 23

L72bDTH 5, GIGASOC I DSP
¥053 360 flil & Zybo & Feilt LCIEHIC
K&\, %72 MPSoC(Multi-Processor
System on Chip) T® 3 7z % ICALIERE
Dl LA LN 5,

C. Image of operation
4%, Figure 10 ® X 912, Tera
Term IZHFERZHI L 7=,

CHACKICKRCKCK

)#'i KKK

before this will be usd

esult: Failure

Figure 10 Result Image
VAT LE ABRRICT TS,

Figure 9 Where to use additional modules 1. %{Efﬁ 7‘_‘ X @E’ﬁ'&ﬂ__oy
button 2 4 Z & THHFT — & D
Utilization Post-Synthesis | Post-Implementation /f }{ — :‘/° %‘é‘%%{i}__@
o
Graph | Table .
i. AE

Resource Utilization Available Utilization %
LUT 6340 70560 8.99 button0 % L < | 1 %#ﬁj‘: L
LUTRAM 463 28800 1.61
FF 9379 141120 6.65 AE %8 %1715,
BRAM 3.50 216 1.62 . . -
DsP 64 360 17.78 . =7y T —XDFHHLAHR
10 12 180 6.67 . .
BUFG 4 196 2.04 button 2 ¥z & CcX—7 v b T —

RDA X =T T siris,
v. g

5729, Gigafi L1}
PHoTD igafirm #£3¢ button 3 Z i3 Z & CTHIET 5,
GIGASOC # T v 27 L DE %

15 2 & & L 7= (Figure 8), Figure 9
1% GIGASOC D NEEHRILZ R L 72
bOTHL, 2DIH, YV I TRE
N-FEFTEML7ZIP Do 5 L C
H5ThHbH, £7z. Figure 11 1
GIGASOC DV ¥ — A DRI % 7~

Figure 11 Resource utilization

4. Future challenges
ZRD 2T LITiE, WL D DWRA]
RE72 HDSEIET B,
A. IP scale up
GIGASOC D i & DK% 7 FPGA %
s 2 ez X o T, AHIALEE A A fE 72
P2 L. AE 2238 o mndifb 23 X4

26

%,
B. How to obtain image data
Sl SD 7 — Fic P o HISE O MR T
—ZEANNTEE, ZOHhrbRALyF
BAFIC X o GERNL 22l THIEZTTS
SR LT3, SRz, BETER
MIPI Camera ICZ55 L, X Y ERHN &>
ATLIERT L 2EZT0D,
C. How to obtain judgment results
%Al Tera Term TOH) TH - 7=
B, SIE AT L% SDBoot 352 &
ZEZTWE, 2Dz, FPGA ILT 4
ATV AZRER L, PCALYUIDEELT
FPGA RIED R TREEICE 2 L 5L 7z
WEFEZTWD, ORI, fIRZEER
HMNFT 2 enEELVWEFEZ D,
D. Judgment other than signature
SO 2T 203, 5 EFLART
% L HIEE LU O EIGR T — 2 OHBI %217 5
TEHTE S, FPGA Z H\W 7238k X
TLELTORMSRFES NG,

5. Impressions

ShEE. TFRHBMT e %2ExT
256 x 256 = 655360 AJJH3A[REZ: TP % FRK
L7z23, iz Aivd FPGA 23FFEL 7\
(CARRY 4 73 350000 LA E4%E) 2 & 1520}
T I o C L E 072, TDD,
IRl & AR ETROR O Lz co v 27 45
FCThotztzo, fil%k & ETHEHES»E W
5 &AL o T,

DSP 7 &0 Y v — B+ 2 M A i
KO HE T A TH o728, Gigafirm Bl
D ZJEEIC X b GIGASOC %t $ 2
TENRTELLED, ZOREICAHAR 2
720

27

Fhid. ALICBES 2 2RHC W 7 0% & B
HED Al DEER T L B hahoizT
O, SO AE KT 2 H 2 &0, Sk
FEHICRVWRBRICR 7289, 5%, C
DY AT LDYWRRP, DI EE I OWT
¥R EPEDTHTFNITLE S,

Decoder

Encoder

Figure 12 IP that can input 65536

HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
SCHOOL OF ELECTRICAL AND ELECTRONIC ENGINEERING

BAIHOC

BACH KHOA

LSI CONTEST

Convolutional AutoEncoder

EDABK

Tuan Khoi Nghiem
khoi.nt192941 @sis.hust.edu.vn

Xuan Son Dao
son.dx203763 @sis.hust.edu.vn

Dai Duong Truong
duong.td203687 @sis.hust.edu.vn

Hoang Kien Trann
kien.th193302 @sis.hust.edu.vn

Hanoi, March 5, 2024

28

INTRODUCTION PAGE

In today’s digital age, image processing has become an important field with widespread
applications in various sectors such as healthcare, automation, and transportation. Con-
volutional Neural Networks (CNNs) have demonstrated their power in solving image
processing tasks. In this context, the autoencoder, an application of CNNs, has been
chosen for practical use. The autoencoder not only has the ability to compress and re-
construct data but also serves as a powerful tool for automatic representation learning

and feature extraction from image data.

This report focuses on optimizing hardware for the autoencoder image decoder,
particularly in the context of image processing. We will delve into hardware optimiza-
tion methods to enhance the performance of the autoencoder image decoder, including
hardware architecture, network architecture optimization, and the utilization of new sen-
sor technologies. We will also discuss the challenges in hardware optimization for the
autoencoder image decoder and the future opportunities it presents.

I would like to express my gratitude to Mr. Nguyen Duc Minh and Ms. Hoang
Phuong Chi for their enthusiastic assistance and support throughout the process of de-
veloping the idea and implementing this project. I also sincerely thank my colleagues in
the EDABK laboratory at the University of Engineering and Technology, Hanoi Univer-
sity of Science and Technology, for their help during the project implementation.

29

TABLE OF CONTENTS

LIST OF FIGURESL......iiiiiiiiiiiiiiiiiiitiiitiiiiiiiieseessessssssesssssscsnnnss 5
LIST OF TABLES) ... iiiiiiiiiiiiiiiiiiiittiiiiiiiiiiiteeeeeesssssesssssccsnnens 6
ABSTRACT | .eutiiiiiiiiiiiiitiiiiiiiieeettesss 7
CHAPTER 1. INTRODUCTION....uuiiiiiiiiitteennnniiiisscceeseesssssnsecsons 1
CHAPTER 2. PROPOSED ALGORITHM [....ccettiiiiiiiiiiiiineennnnniiinnnns 2
2.1 |Specifications and flow design|.................ccooiiiiiiiiiiiiiiiiiiiiiinnnn. 2
2.2 |Design Convolutional Neural Network for image compression,|............ 4
2.3 [Traning models All.............oeuneeeuniieuieeeneeeenneeeeseesensesencesenns 5
2.4 |Implementation using high-level synthesis by Vitis High level systhesis|.. 6
2.4.1 [Techniques used inthe model|....................co it 7

2.4.2 |Optimize fix-pointed representation|.............oouveiuneinnenneennn.n. 10

2.4.3 |Application of Algorithms in CNN|................ooi 12
CHAPTER 3. FPGA IMPLEMENTATION|.....cccoittttiiiiiiiiiiiiiiceeneens 23
3.1 Data Acquisition System DeSign|............cccovieiiiiiiiiiiiiiiinniiienenns 24
3.2 |Integrating CNN into the Data Acquisition System,......................... 26
3.3 |System deployment|.............cooouuiiiiiiniiiiiiiiiiiiiiiiiiiiiiiiiiiiaienns 27
3.3.1 |Design blocks on Vivadol..........c.oviiiiiiiiiiiiiii it 28

3.3.2 [Build application]............oouuiiiiiiiiii i 28
CHAPTER 4. RESULTS | ..uuutiiiiiiiiiitttnnniiiiiiseseessesssssssssssssssssens 30
4.1 |PYthon ReSUILS|........c.eeneeenieeiiiieinieeneteeeeneeenesesesnessnsssnasnnns 30
4.2 (VerifiCation,ccuuueeuneieuneeeeneeeeuseeeneeecanessonsessnsessnsesenns 30
N R | 2 T 0T [31

4.2.2 IDECOUCT]. .« e ettt ettt ettt et 36

4.2.3 JAUOENCOAET|. . ..ottt 41

4.3 |Compare With DYtRON|.euneeuieeieeneteeeneeeneseeesneesnesonasnnns 42
4.4 [Implementaion on ZCUIO|..........euneeeuiieeuiieiiieienieeeneeceneesenns 44
CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENT.......... 45

30

TAI LIEU THAM KHAO

31

LIST OF FIGURES

[Figure 2.1 Flow design of our project].............oooviiiiiiiiiiiiiiiin i, 2
[Figure 2.2 Convolutional flow designl................cooooiiiiiiiiii i, 4
[Figure 2.3 Auto Encodermodell............c.o 5
[Figure 2.4 Workflow of Convolutional Neural Network using High Level |
SYNENESIS| ...ttt e 7
[Figure 2.5 Twolinebufer].............ooi i 7
[Figure 2.6 Two line bufer flow| 8
[Figure 2.7 Window for image processing|............couuuieeeeiiiiinneeeennnnn.. 9
[Figure 2.8 Window update dataloooi i 9
[Figure 2.9 Padding|............ooooiiiiii 10
[Figure 2.10 Convolution neural network] ..., 12
[Figure 2.11 Updating data operation|cooiiiiiiiiiiiiiinniiinnnnnn.. 14
[Figure 2.12 Convolution with padding|..................coooiiiiiiiiiii it 15
[Figure 2.13 Update Convolution|..............oooiiiiiiiiiiii i 16
[Figure 2.14 Pooling Operator].............uiiiiiiieriiieeiiieeiiieeeiiieeeiaaanns 17
[Figure 2.15 Pooling Data Storage|............coouiiiiiiiiiiiii i, 17
[Figure 2.16 Design Flow of HLS|....... ..o, 19
[Figure 2.17 Stream HLS| 20
[Figure 2.18 Stream HLS| i 20
[Figure 2.19 Pragmal....... ... 22
[Figure 3.1 Zyng™ UltraScale+™ MPSoC ZCUI04|............cooooiiina. 23
[Figure 3.2 System architecture|coooiiiiiiiiiiii i 25
[Figure 3.3 System block diagram|cooii i 26
[Figure 3.4 Diagram showing data flow|................. ... 27
[Figure 3.5 Steps to deploy the system|..........coovviiiiiiiiiiiiiiinneeinnnnn.. 28
[Figure 3.6 Steps to deploy the system|.................cooiiiiiiiiiiii i, 29
[Figure 4.1 Auto Encoderresult].......... ... 30
4

32

[Figure 4.2 Auto Encoder Block|coo 31
[Figure 4.3 Encoder Part Latency|.................ooooiiiiiiiii 31
[Figure 4.4 Number of DSP, FF, LUT and DRAM 1n the Encoder Block....... 32
[Figure 4.5 Main encoder blockl.......... ... 33
[Figure 4.6 Multiplexer Block|...............co 34
[Figure 4.7 Loop pipe Control|.......... ..o 34
[Figure 4.8 Encoder waveform|..............cooooi i 35
[Figure 4.9 Encoder waveform|...............cooo i 35
[Figure 4.10 Encoder waveform|...............cooiiiiiiiiiiiii i 36
[Figure 4.11 Main decoder block]........... ..o 37
[Figure 4.12 DSP, FF, LUT, and DRAM 1n Decoder Block|....................... 38
[Figure 4.13 Decoder Part Latency|..............oooiiii i 38
[Figure 4.14 Input Data vs. Output Datal.......................o. 39
[Figure 4.15 Clock Signal and Data Transition| ..., 40
[Figure 4.16 Stored datal...............iiiii 40
[Figure 4.17 Utilization Estimates|.............cooooi i 41
[Figure 4.18 Interfaces in CNN Blockl...............cooi i 41
[Figure 4.19 Wave form for AutoEncoder|..................ooiiiiiii . 42
[Figure 4.20 AutoEncoder IP Block]. ... 42
[Figure 4.21 Stored datal......... ... 43
[Figure 4.22 Stored datal......... ...t 43
[Figure 4.23 Implementation on FPGA| i, 44

5

33

LIST OF TABLES

[Table 2.1 Set interger bits in layers|...............coooi i 11
[Table 2.2 Resources used corresponding with bit width|........................ 11
(Table 2.3 Resources used in ZCUTO4. ...t 11
(Table 3.1 Relevant components for this project|..................ccooeviiiiinn... 24

6

34

ABSTRACT

Due to recent advances in digital technologies, and availability of credible data,
an area of artificial intelligence, deep learning, has emerged, and has demonstrated its
ability and effectiveness in solving complex learning problems not possible before. In
particular, convolution neural networks (CNNs) have demonstrated their effectiveness
in image detection and recognition applications. In this article, we talk about how to
implement Deep Learning CNN algorithm to create encoders that compress dimensions
and decoders that restore them by leveraging the power of parallel computing inside
the FPGA fabric and speeding up the development process using High-Level Synthesis
(HLS).

35

CHAPTER 1. INTRODUCTION

With the explosion of big data, efficiently managing and processing information
has become an increasingly significant challenge. Hence, our project focuses on de-
veloping efficient encoders and decoders capable of compressing information into low-

dimensional space and accurately restoring the original data.

We will proceed with designing and training encoder models with the ability to
compress information to the smallest dimensional size. Simultaneously, we will create
decoders that can restore data with minimal loss. These encoders and decoders will not
only reduce data size but also ensure the quality and accuracy of the data after restora-

tion.

By combining in-depth knowledge of Convolutional Neural Networks (CNN), C++
programming, and the high-level synthesis tool Vitis_ HLS, we are committed to creating
a comprehensive, innovative, and flexible solution. Our project not only promises to
win awards in the LSI Design Contest but also contributes to the progress of the data
processing and embedded systems field. Let’s together conquer the challenge and make

unique contributions to this captivating theme!

The chapters that this project document contains are briefly described below:

* Proposed algorithm: This is the core chapter of the project. In this chapter there

is first a description of the architecture of the our project.
* Results: The research results collected in this chapter include summarized results.

* Conclusions and future development: The conclusions of the project are de-
scribed in this chapter including some future developments are commented to mo-

tivate future thesis or research projects.

At the end of the project, there is detailed the literature consulted in this thesis, as
well as the project examples and trainings followed in the Bibliography chapter. And
finally, there are a set of Appendixes and a section defining the Acronyms and Glossary

appearing in the report.

36

CHAPTER 2. PROPOSED ALGORITHM

The development of the project is divided into different steps in order to easily
focus each part of the whole system and make it work itself as a smaller system. This
way, at the end of the project, the whole system will be merged using the acquired know-
how from the previous steps. This working methodology has been selected because of
the complexity of the work field and the lack of knowledge about it from the company.

Accordingly, this section is composed by first a description of the final system and

its architecture and then all the steps required to complete the work.

2.1 Specifications and flow design

Specifications:

e Input image: 28 x 28.

 Design environment: Vitis_HLS and Vivado

Flow design:

/ Convolutional Encoder-Decoder /

/4 7
Ay Y a4 S ____
-1 [

s ey ! -

A 4
A 4 k4

Weights Biases
|:i:| _l_‘ Camera

F 3

> * Zyng ultrascale+ N)
IP Core N MPSoc » Monitor
CIC++ HDL 'y

Y

r

b 4

v v I
CIC++ CIRTL
simulation Co-Simulation vCcu DRAM
4_

ZCU 104

Vitis HLS Development Environment

Figure 2.1 Flow design of our project

Our project comprises three main components, all aimed at optimizing the image

372

compression process through an efficient Convolutional Neural Network (CNN) sys-
tem. The initial step involves designing and training a CNN model to achieve optimal
performance in image compression. This requires careful consideration of network ar-

chitecture, hyperparameters, and appropriate training datasets.

Upon successful model training, we will generate parameter files, including weights
and biases, from the trained model. These parameters play a crucial role in replicating
the model on a different platform: the C++ programming language. We will convert
the model from the Deep Learning model language to C++ source code to seamlessly
integrate it into embedded systems.

The next step in the project is high-level synthesis using the Vitis_HLS tool. Through
this process, C++ source code will be transformed into Verilog, a popular language in
integrated circuit design. This transformation results in an Intellectual Property (IP)
block with the functionality to perform image compression based on the constructed
CNN model.

Finally, this IP block will be integrated into the ZCU 104 controller using the Vi-
vado tool. This integration will create a complete system capable of high-performance
image compression and flexible integration into various embedded applications. Our
project promises to deliver an effective solution with deep integration for the image
compression challenge in embedded systems and mobile devices

38

2.2 Design Convolutional Neural Network for image compression

Encode
Jo

Compress image
4 227
I —4§

-
J

Original image

m [T —

Recontructed image

-
Decode

Figure 2.2 Convolutional flow design

To perform the task of image compression and decompression, we constructed
an Autoencoder network based on convolutional layers. The architecture depicted in
Figure 1 comprises two distinct parts - ComCNN and RecCNN. The initial part of the
network consists of several convolutional layers to learn low-level features of the image.
Small filters are utilized to capture local features, followed by Maxpooling2D layers.
The responsibility of ComCNN is to compress these images in a manner such that the
resulting images can be efficiently reconstructed by the decoding network to closely

resemble the original images.

The decoding part, RecCNN, includes convolutional layers and Upsampling2D lay-
ers. The entire model is trained on the MNIST handwritten digit dataset, undergoing 500
training iterations. The trained weights are then transferred to C code using the High-
Level Synthesis (HLS) framework of Vitis. Subsequently, the generated Verilog code,

394

along with the hardware description, is synthesized into a bitstream using Vivado. This
bitstream, along with the Petalinux platform, creates an image file along with the root
filesystem.

The generated bitstream, along with u-boot and the ELF file, is compiled into a
boot.bin file. All these files are then written to an SD card for loading onto the ZCU104
board.

In summary, the process involves training the autoencoder model on the MNIST
dataset, converting the trained model to C code using HLS, generating Verilog code,
synthesizing a bitstream, creating a boot image with Petalinux, and finally, writing the
resulting files onto an SD card for deployment on the ZCU104 board.

2.3 Traning models AI

16@28x28 16@14x14 16@14x14 16@28x28

8@14x14 8@7x7 B8@7X7 8@4x4 8@4x4 B@8x8 8@8xg B@16x16
1@28x28 . . 1@28x28
%ln iﬂ
nr.l nn
nu un
— 9, — ~_

—
Input Conv2D MaxPool Conv2D Maxpool Conv2D Encode Conv2D UpSample Conv2D UpSample Conv2D UpSample

Figure 2.3 Auto Encoder model

Inspired by the Keras Autoencoder, our team constructed an Autoencoder model
based on the Convolutional Neural Network (CNN) architecture. Using the Keras frame-
work, we designed the network with two main components: Encode and Decode. The
model was trained on the Mnist handwritten digit dataset, where the input consists of
grayscale images with dimensions of 28 x 28 pixels.

The Encode portion comprises three Convolutional layers with a 3 x 3 kernel size
each and three Maxpooling layers with a 2 x 2 size. The encoded image is obtained by
passing it through the third Maxpooling layer with a size of 4 x 4 x 8. Subsequently, this
encoded image undergoes four Convolutional layers and three Upsampling layers in the
Decode section to reconstruct the compressed image.

The model optimization was performed using the Adam optimizer, employing bi-
nary crossentropy [2.1{as the loss function. Evaluation metrics included two parameters:
Structural Similarity Index (SSIM) and Peak Signal-to-Noise Ratio (PSNR). The train-
ing process involved 500 epochs with a batch size of 120. The formula for Mean Squared
Error (MSE) [2.3]is described below.

40

N
- Z yi-log(p(yi)) + (1 —yi) -log(1 — p(yi))] (2.1)

l:]

The SSIM formula[2.2)relies on three parameters for comparison: luminance, con-

trast, and structure.

SSIM(x,y) = [[(x,)] - [e(x,)]P - [s(x,)" 22

The Mean Squared Error (MSE) [2.3]is defined as

m—1n—1

MSE = — Z Z i,) (2.3)

20 Jj=
where I and K are the original and synthesized images, respectively.

PSNR [2.4]is determined through MSE for a two-dimensional image of size m x n,

and is given by

(2.4)

MAX;

VMSE

In this context, MAX; represents the maximum pixel value in the image. When
pixels are represented by 8 bits, its value is 255. In the general case, when the signal is
represented by B bits per sample, MAX; is equal to 25 — 1.

2.4 Implementation using high-level synthesis by Vitis High level systhesis

In this section, we will move on to the deployment process of the previously de-
signed algorithm. We will program to create an IP block capable of accurately executing
the mentioned algorithms. In this process, we will use the C++ programming language
and the High-Level Synthesis (HLS)2.4{library to generate an IP block implemented in
VHDL.

41

Train Neural

Network »| Data text

Add pragma
directives

Does data
match with
train result:

Img code
C++ and port it to
Vitis HLS

CIRTL
Verification !

Optimize data flow
and resource
allocation

.
~. Work flow of Convolutional Neural Network using High Level Synthesis

Figure 2.4 Workflow of Convolutional Neural Network using High Level Synthesis

2.4.1 Techniques used in the model
2.4.1.1 Linebuffer in Image Processing

Linebuffer is a data structure used to temporarily store a line of data from an image
during processing. It is structured as a temporary memory, capable of maintaining one or
multiple lines of data at a time. Operation Process of two linebuffers, in each processing
cycle, new data from the image is input into the Linebuffer

Input image

Input pixel

Line buffer

Figure 2.5 Two line bufer

The Linebuffer stores the previous line of data and provides it for the next process-

ing step.

Each input data will be stored in row 2 of the buffer with the column corresponding
to the input data (for example, if the column of the input pixel is 5, the newly stored data

will be in column 5, row 2).

42

Before receiving additional input data, the linebuffer shifts the data of the column

being examined up to row 1, as shown in the figure. Similarly, this continues until the

last input of the image

I

Saved pixel

Input pixel ’

Line buffer

Figure 2.6 Two line bufer flow

Advantages of using 2-line buffer:

During convolution, linebuffer helps reduce the time to access data from the image,
increasing the algorithm’s efficiency. Maintaining the previous line of data helps reduce

latency when applying convolution weights to small parts of the image.

The use of Linebuffer not only helps reduce latency but also optimizes performance
by efficiently maintaining and organizing data. This structure is particularly important
when deployed on FPGA hardware, where resources are precious, and memory access
can be costly.

2.4.1.2 Window in Image Processing

The window is a data structure or strategy used to extract small portions of an
image during processing. In the context of image processing, the window is often used
to apply convolution and pooling operations to small regions of the image. Operation
Process of the Window:

The window typically moves over the image with a certain step (stride) to continu-
ously extract small portions.

The size of the window can be adjusted depending on the requirements of the

specific algorithm and the size of the region of interest.

43

Stride 1

Figure 2.7 Window for image processing

The value of the window is updated from the window and input data. When the
window shifts with a stride of 1, the value of the window will always be updated. In row
2, the value will be updated from the buffer in the above paragraph and the input pixel
value as shown in the figure. Then when the window moves away, the window value is
updated by shifting the data to the left by 1 column, and at column 2, the data is updated
similarly to the above. Impact of the Window in Convolution and Pooling [2.8}

: Saved pixel

PR, _ Continue update in col 2
¢ Input pixel

Line buffer

i1 Window

Figure 2.8 Window update data

2.4.1.3 Padding

Padding is a technique of adding zero values around the edges of an image to
maintain the size of the image across layers of a CNN model.

In the deployment process, adding zero values is performed as part of the data

preprocessing to prepare the input for convolution and pooling layers.

44

0O 0 0 0O 00O 0O 0 0 O

OO0 o o o oo o © 0o o
OO0 o © o oo © © oo o

0 0 0 0O OO O O 0 O

w

i} padding i ¢ Input pixel

Figure 2.9 Padding

Padding increases the size of the image representation, preserving information at
the edges and helping avoid the loss of important information. In convolution layers,

padding helps minimize edge effects and maintains the size of the output.

2.4.2 Optimize fix-pointed representation

The second technique I employ is optimized fixed-point representation, a strategy
crucial for efficiently utilizing system resources while maintaining desired performance
levels. In this context, I focus on tailoring fixed-point representations to suit the capa-
bilities of the ZCU 104 platform.

One key consideration is the length of the bit width, which directly impacts re-
source allocation. By carefully setting the fixed-point representation, I can strike a bal-
ance between resource utilization and achieving satisfactory image results. This involves
adjusting the number of integer bits in each layer to refine the data range and select an

appropriate width for representation [2.1

Through experimentation and analysis, I’ve found that transitioning from a 32-bit
to a 24-bit representation yields significant benefits. While reducing the bit width, 1
ensure that the quality of the images, as measured by metrics such as Peak Signal-to-
Noise Ratio (PSNR), remains consistent. By fine-tuning the integer bits within each
layer, I optimize resource utilization without compromising image quality

In summary, optimizing fixed-point representation involves strategically selecting
bit widths and adjusting integer bits to maximize efficiency while preserving image
quality This approach enables us to achieve a desirable balance between resource

utilization and performance on the ZCU 104 platform.

4510

Table 2.1 Set interger bits in layers

Layer Convl | Pooll | Conv2 | Pool2 | Conv3 | Pool3 | Conv4 | Upsa4 | Conv5 | UpsaS | Conv6 | Upsa6 | Conv7
Range | syl 0 | 443 | o | 115 | o | 216| o | 074 o 1.9 0 0.66
(min)
Range 112 | 115 | 099 | 313 | 083 | 664 | 567 | 567 | 1.15 | 7.86 | 1951 | 1951 | 0.98
(max)

Interget bit 3 3 4 3 3 4 4 3 4 3 3 4

Table 2.2 Resources used corresponding with bit width

Bit width | PSNR (dB) FF LUT DSP | Latency (ms)
32 68.1 410249 | 458106 | 6172 0.155
31 68.2 379368 | 427192 | 5126 0.155
30 67.6 347151 | 392675 | 4577 0.155
29 65.4 337869 | 356504 | 3822 0.150
28 64.5 308463 | 292575 | 3194 0.150
27 64.1 261412 | 231142 | 2256 0.150
26 63.4 232594 | 184695 | 1975 0.150
25 63.4 217641 | 160482 | 1723 0.150
24 62.8 170542 | 111408 | 1611 0.150

Table 2.3 Resources used in ZCU104
FF LUT | DSP
Available
460800 | 230400 | 1728
(ZCU104)
Used 170542 | 111408 | 1611
Utilization (%) 37 48 93
11

46

2.4.3 Application of Algorithms in CNN
2.4.3.1 Convolution

Convolution Neural Network (CNN) 1s designed to extract important features
and structures from image data.

Weights

k\;H
Input Features Output Features

F
A
Flo
N
v I N-K+1
'\:H

4+—>
N-K+1

Figure 2.10 Convolution neural network

To implement this algorithm, I use line buffer and window to perform convolution

with the kernel. This process is carried out through the following steps:

1. Initialize Initial Parameters:

int acti, padding, fil_in, fil_out, width, height;

T *linebuf, *win, *bias2, *ker;

hls::stream<T> &src, &dst;

* acti: Set the activation function corresponding to convolution (0 for ReLLU and
1 for sigmoid).

* fil_in: Depth of the input channel.

* fil_out: Depth of the output channel.
» width: Width of the input channel.

* height: Height of the input channel.
* linebuf: Line buffer array.

* win: Window array.

* ker: Kernel data array (weights).

a712

* bias2: Bias for the convolution layer.
* src: Input data stream.

e dst: Output data stream.

2. Set Up Line Buffer and Window:

For Line Buffer:

// Shift values in line buffer vertically

ShiftLineBuf: for (int 1 = 0; i < K-1 ; 1i++) {
#pragma HLS PIPELINE

T temp = (1 < K - 2) ? linebuf[num_fill* (K-1)*width+ (i+1) *width+
pool_col] : in_val;
linebuf [num_fill* (K-1)*width+i*width+pool_col] = temp;

Input variables are updated at row 1 and the current column in the input data. Before
fetching new data, the value at the current column is shifted up to the upper column.
This process is then repeated to maintain the line buffer.

For Window:
if (pool_row >= K - 1) {
// Shift values in the window horizontally

CUpdateWinH: for (int win_row = 0; win_row < K; win_row++) {
CUpdateWinW: for (int win_col = 0; win_col < K; win_col++) {
#pragma HLS PIPELINE
if (win_row < K - 1) {
win[num_ fill*K*K+ win_row*K+ win_col] = (win_col < K -

1) ? win[num_ fill*K*K+ win_row*K + (win_col + 1)]
linebuf[num_fill* (K-1)*width+ win_row*width +pool_col
17
} else if (win_row == K - 1) {
win[num_ fill*K*K + win_row*K + win_col] = (win_col < K -
1) ? win[num_ fill*K*K+ win_row*K + (win_col + 1)]

in_val;

When the data reaches row 2 of the input channel, the window starts to update. Col-
umn 2 of the window takes values from the line buffer and input pixel. Specifically,
row 0 and row 1 take values from row O and row 1 of the current column. This

process continues to maintain the sliding window over the input data.

3. Convolution: When examining a column with a value greater than or equal to 2, a
new convolution begins. This operation multiplies each value of the window with
the corresponding kernel value and then sums them up.

ag13

CFilter: for (int num_fil2 = 0; num_fil2 < fil_out; num_fil2++) {
if (pool_col >= K - 1) {
CWinH: for (int win_row = 0; win_row < K; win_row++) {
CWinW: for (int win_col = 0; win_col < K; win_col++) {
#pragma HLS PIPELINE
data[num_fil2] += win[num_fill*K*K + win_row*K + win_col
1 * ker[num_fil2*fil in*K*K+num_ fill*K*K+win_row*K+

win_col];

4. Apply Activation Function and Save Result: After obtaining data from the previ-
ous step, it undergoes the activation function to normalize the data. Then the result

is saved into the output.

for (int 1=0; i<fil_out; i++) {

if (acti == 0) {
dst << relu((data[il+bias2[i]));
} else {

dst << sigmoid((data[il]l+bias2([i]));

An illustrative example is shown in the figure below.

BEFORE AFTER
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
10|11 (12|13 (14| 15|16 | 17 | 18 | 19 10|11 (12|13 (14| 15|16 | 17 |18 | 19
20 | 21422 (23| 24425|26 |27 (28] 29 20 (21|22 F23 | 24| 2526 |27 |28 | 29
30 |1314§32(33|34335|36|37|38]39 30|31 (32FE33|34(35}F36|37|38] 39
|mage 40 (41142 | 43 (44145 | 46 | 47 | 48 | 49 Read input p,ixe‘ 40 | 41 | 42 [43 | 44 [45 [46 | 47 | 48 | 49
50 | 51|52 (53|54 (55]|56]|57|58]59 50|51 (52|53|54(55]|56|57]|58]59
60 | 61 | 62 | 63 | 64 | 65| 66 | 67 | 68 | 69 60 | 61 [62 | 63 | 64|65 |66 |67 |68 | 69
70|71 |72 |73 |74 (75|76 |77 (78|79 70|71 (72|73 |74 (75|76 |77 |78 |79
80 |81 |82 (83|84 (85|86 |87 |88]|89 80 (81|82 (83|84 (85)|86 |87 |88 |89
90 |91 |92 (93|94 (95|96 |97 (98] 99 90 |91 (92|93 |94(95|96 |97 |98 |99
Buffer | 30131]32[33[34125126(27 (28|29 | uiroua 30(31(32(33(34|35|26(27 (28|29
40 |41 |42 |43 |44 |35" 36 |37 3839 | receteimvucan [oTa1 a2 a3] aafas |36 |37]38]30
22<123424 2312424 33| 24 F25
Shift col Receive data from
Window 32339343 — 33|34 |34} bufferimage 333435
4243444 43|44 |44 43 | 44 {45

Figure 2.11 Updating data operation

49 14

INPUT OUTPUT

10|11 (12 (13|14 |15 |16 | 17|18 | 19

20 (2122923 |24 (2526|127 |28]|29

Convolution with padding 1
30313293334 }35436[37]38]39 34

40 |41 4243 |aa{a5] a6 |47 |48 a0

23(24}25¢ |A |B |C
33(3435t*(D |E |F
43 |44 {45 G [H [J

50 [51 [52| 53|54 55- 56 | 57 | 58 | 59

60 [61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69

70 (71| 72|73 |74 (75|76 |77 |78 |79

80 (81|82 83|84 85|86 |87 |88]89 Window Kernel

90 [91 92|93 |94 (95|96 |97 |98 |99

Figure 2.12 Convolution with padding

2.4.3.2 Pooling

Pooling is a crucial component of Convolutional Neural Network (CNN) mod-

els designed to reduce the size of representations and enhance important features from

image data. Pooling layers typically operate by dividing the image representation into

pools and retaining either the maximum value (Max Pooling) or the average value (Av-

erage Pooling) of each pool. In the provided code snippet, we implement Max Pooling

with a window size of POOL_SIZE. This process is carried out through the following

steps:

1. Initializing Parameters:

int padding, int fil, int width, int height, T *pool_buf, T *pool_win,

hls::stream<T> &in_pl, hls::stream<T> &out_pl

Parameters include padding size, input channel depth, input width, input height,

pool buffer array, window array, input stream, and output stream.

. Updating the Window: The ’pool_win’ window is updated with data from ’in_pl’
and ’pool_buf’. Similar to the kernel part, the values of the window and line buffer
are updated. However, unlike the convolution layer, here the line buffer has only

one row, and the size of the window is 2 x 2.

if (pool_row >= K - 2) {
PUpdateWinH:for (int pool_win_row = 0; pool_win_row < POOL_SIZE;
pool_win_row++) {
PUpdateWinW: for (int pool_win_col = 0; pool_win_col < POOL_SIZE
; pool_win_col++) {
#pragma HLS PIPELINE

if (pool_win_row < K - 2) {
pool_win[num_filters*POOL_SIZE*POOL_SIZE + pool_win_row
*POOL_SIZE + pool_win_col] = (pool_win_col < K - 2)

? pool_win[num_filters*POOL_SIZE*POOL_SIZE +
pool_win_row*POOL_SIZE + (pool_win_col+l)]
pool_buf[num_filters*width + pool_col];

5019

} else if (pool_win_row == - 2) {
pool_win[num_filters*POOL_SIZE*POOL_SIZE + pool_win_row
*POOL_SIZE + pool_win_col] = (pool_win_col < K - 2)
? pool_win[num_filters*POOL_SIZE*POOL_SIZE +
pool_win_row*POOL_SIZE + (pool_win_col+1)]

in_pool_val;

}
}
}
}
BEFORE AFTER
0 1]2 3[4 s]e6 7]8 910 12 o 1]2 3[4 5|6 7|8 910 11
12 13|14 15|16 17|18 19|20 21|22 23 12 13|14 15|16 17|18 19|20 21|22 23
mage: 124 25126 27|28 29130 3132 33|34 35 24525[26727 |28 29(30 3132 33|34 35
.| 2 25 129 _dylleld || B0 ER||ER EB|ES ED L 2A52)20:27 128 29130 31323303
36 37138:39|40 41|42 43|44 45|46 47 3613738539 |40 41|42 43|44 45|46 47
48 49|50 51|52 53|54 55|56 57|58 59 48 49|50 51|52 53|54 55|56 57)58 59
60 61|62 63|64 65|66 67|68 69|70 71 60 61|62 63|64 65|66 67|68 69|70 71
Buffer: [36 [37 26 {27 [28[29[30[31[32[33]34 [35] [36[37 381272829 303132333435
24125
Window: 36937

Figure 2.13 Update Convolution

3. Pooling Operation: The window is updated until the value is multiplied in an odd
column, and then the comparison is initiated to find the maximum value in the

window.

if (pool_col % (K - 1) == 1 && pool_row % (K - 1) == 1) {
PWinH:for (int pool_win_row = 0; pool_win_row < POOL_SIZE;
pool_win_row++) {
PWinW:for (int pool_win_col = 0; pool_win_col < POOL_SIZE;
pool_win_col++) {
#pragma HLS PIPELINE
if (temp <= pool_win[num filters*POOL_SIZE*POOL_SIZE +
pool_win_row*POOL_SIZE + pool_win_col]) {
temp = pool_win[num_filters*POOL_SIZE*POOL_SIZE +
pool_win_row*POOL_SIZE + pool_win_col];

5710

BEFORE RALS

0 1|2 3|4 5|6 7|8 9]10 11
12 13|14 15|16 17|18 19|20 21|22 23

0 1|2 3|4 5|6 7|8 9]10 11
12 13|14 15|16 17|18 19|20 21|22 23

24725(26%27 |28 2930 31|32 3334 35 L| 24,2426 27428 29130 3132 33134 32
CELTY-TErrE e f ll 1 a
3613738139 |40 41|42 43|44 45|46 47 367 37IREREG) 40 4142 43144 45146 &

48 49|50 51|52 53|54 55|56 57|58 59
60 61|62 63|64 65|66 67|68 69|70 71

Buffer: |36 37 [38 27282930 [31]32[33]3a35] [36]37]38127]28]29]30[31]32]33]34]35
o — N Compare and find max value
T
Window: :i <§: B

Figure 2.14 Pooling Operator

4. Data Storage: The size of the data output will be halved in both width and height
after Max Pooling.

BEFORE
o 1|12 3|4 5|6 7|8 9(10 11
12 13 (14 15|16 17|18 19|20 21|22 23
24 25126 27128 29|30 31|32 33|34 35

AFTER

36:37{38:39)40 41|42 43|44 45|46 47
48 49|50 51|52 53|54 55|56 57|58 59
60 61|62 63|64 65|66 67|68 69|70 71

39 3

Figure 2.15 Pooling Data storage

The use of pooling layers helps reduce the size of representations and computational
complexity in CNN models. It retains essential features by selecting the maximum

value within each pool, effectively downsizing the output dimensions.

2.4.3.3 Upsampling

Upsampling with Nearest Neighbor Interpolation serving to increase the size of
the output data without sacrificing essential information. This process is commonly
used to reconstruct the resolution of images and generate more detailed representations

of features.

In this implementation, we utilize Nearest Neighbor Interpolation, a technique that

calculates new values based on the values at the nearest grid points.

Upsampling Function

template<typename T>
void sp_upsamp (int fil,int width, int height, T *upsam_buf,hls::stream<T> &

in_usl, hls::stream<T> &out_usl) {

UHeight:for (int cona_row = 0; cona_row < 2 * height; cona_row++) {
UWidth:for (int cona_col = 0; cona_col < 2 * width; cona_col++) {
17

52

#pragma HLS PIPELINE
UFils:for (int cona_depth = 0; cona_depth < fil; cona_depth++)
{

if(((cona_row % 2) == 0) && ((cona_col % 2) == 0)){
T temp = in_usl.read();
upsam_buf [cona_depth*width+ (cona_col / 2)] =temp;

}
out_usl << upsam_buf [cona_depth*width+ (cona_col / 2)1;

2.4.3.4 Activation Functions: ReLU and Sigmoid

Activation functions in Convolutional Neural Networks (CNNs) that introduce non-
linearity, enabling the network to learn complex patterns and representations. Two com-
monly used activation functions are Rectified Linear Unit (ReLU) and Sigmoid.

1. Rectified Linear Unit (ReLU): ReLU is a popular activation function that intro-
duces non-linearity by allowing the positive values to pass through while setting
all negative values to zero. This simple yet effective function helps CNNs learn

intricate features and patterns in the input data.

data_t relu(data_t a) {
return a > (data_t)0 ? a : (data_t)O0;

2. Sigmoid: Probabilistic Output: Sigmoid is suitable for tasks requiring probability
outputs, making it commonly used in the final layer of a CNN for binary classifica-

tion.

Smooth Gradient: Sigmoid provides smooth gradients during backpropagation, aid-

ing in stable training.

data_t sigmoid(data_t x) {
return 1.0 / (1.0 + expf(-x));

5318

2.4.3.5 High Level Synthesis

Output
s N\ s A
IP Catalog
Design Flow of HLS \)
Y
M\ M) Export DCP
Input RTL
| —
() —>
O
Directives I:>
Vivado VHDL / SysGen
HLS :(> verilog N < N J
—)
C/C++ Source :(>
Ee—
— —
 — C/ RTL
C/C++ Test | :> Co-
bench Simulation
| —
—

Figure 2.16 Design Flow of HLS

With HLS tools, developers can deploy algorithms and functions from a high-level
language such as C or C++, reducing the complexity of the development process and
optimizing the hardware performance. It serves various purposes, including:

Accelerating Development Process: Using a high-level programming language
helps reduce development time compared to using low-level languages like Verilog or
VHDL. Developers can focus more on algorithmic modeling rather than the details of

hardware implementation.

Resource Optimization: HLS has automatic optimization capabilities, effectively
utilizing hardware resources. This is particularly crucial when working on platforms
with limited resources, such as FPGAs.

Flexible Control: Features like stream, AXIS, fixed-point, and pragma provide
developers with flexible control during the automatic optimization process. This helps
optimize hardware according to the specific requirements of the application.

1. Stream:

54 19

INPUT STREAM
OUTPUT STREAM

.:> E :>.

AXI STREAM AXI STREAM

Figure 2.17 Stream HLS

Streaming is a data transfer method where data samples are sent sequentially from
the first sample. Modeling designs using streaming data can be challenging in C.
The use of pointers to perform multiple read and/or write accesses can introduce

issues related to type qualifiers and test bench construction.
Vitis HLS provides a C++ template class ‘hls::stream<>‘ for modeling streaming
data structures. These streams have the following attributes:

* In C code, ’hls::stream<>’ acts like an infinite-depth FIFO.

* They are read and written sequentially, meaning that once data is read from an

“hls::stream<>’, it cannot be read again.

* An ’hls::stream<>" on the top-level interface is, by default, implemented with
an ’ap_fifo’ interface for the Vivado IP flow or as an ‘axis‘ interface for the

Vitis kernel flow.

* Streams can be named, and the depth of the FIFO can be adjusted.

!

AXl-Lite Slave

axiotream, B riFo [“Stream Debugger | FIFO M;fj:f:"‘"

Sink

AX| Stream uuT
Processing Chain

Figure 2.18 Stream HLS

In addition, my project utilizes the AXI Stream interface for handling these streams
efficiently. The choice of the AXI Stream interface further enhances the commu-

nication between different hardware components, ensuring seamless and standard-

5520

ized data transfer. This approach not only simplifies the implementation of read and
write operations but also contributes to the overall optimization of computational

processes within the project.

. Fixpoint: The Fixed-Point section in the report plays a crucial role in optimizing
performance and resource utilization in the project. They have the following advan-
tages:

* Reduced LUT Usage:

— Utilizing Fixed-Point instead of floating-point numbers can simplify the
logic circuit complexity and reduce the number of Look-Up Tables (LUTs)
used.

— Enhances the potential for RTL optimization, especially on resource-constrained
platforms like FPGA.

* Performance Optimization:

— Fixed-Point can reduce a certain level of precision without significantly im-
pacting the results, helping to decrease computation load and accelerate
processing.

— It can enhance computational capabilities and reduce execution time for

hardware with limited resources.
* Resource Savings in HDL Tools:

— Fixed-Point Representation can decrease the required memory footprint and
reduce the amount of combinational resources used during synthesis.

— The Fixed-Point section in the project not only provides an effective re-
source utilization approach but also brings significant benefits in terms of

performance and optimization throughout the development process.

In this project, the decision to use Fixed-Point with 40 bits and allocate between the
integer and fractional parts is a reasonable choice. You’ve allocated 10 bits for the
integer part and 30 bits for the fractional part, providing a good balance between

precision and representation size.

. Pragma: Pragma plays a crucial role in guiding or modifying how High-Level
Synthesis (HLS) tools organize and synthesize source code to optimize performance

and utilize hardware resources. Below are some pragmas I use in my project:

* Dataflow Pragma: #pragma HLS dataflow: This pragma is used to create a
DATAFLOW region, where all implemented functions or source code blocks
operate independently and in parallel. This helps optimize performance by

allowing functions to perform computations without waiting.

5621

* Pipeline Pragma: #pragma HLS pipeline: This pragma indicates that loops in
the source code can be divided into stages and executed in parallel. This helps

optimize the working speed of the logic circuit.

(N [e Y A I I

- - - -
3 cveles I eycle
LU CMP | wWR] EMP | WR | LU CMP | WR |
- . RD 0 T
2 cycles -
2 eycl
{A) Without Function Pipelining (B) With Function Pipelining

Figure 2.19 Pragma

* Interface Pragma: #pragma HLS interface: This pragma is used to define the
module’s interface in the project, including AXI4-Stream, AXI4-Master, AXI4-

Slave interfaces, and various other interface types.

* Dependence Pragma: #pragma HLS dependence variable: This pragma is used
to identify dependencies between variables, helping the HLS tool better under-
stand the dependency relationships between data.

22

57

CHAPTER 3. FPGA IMPLEMENTATION

In this section, we implement the CNN algorithm in the previous section in FPGA
known as the Zyng™ UltraScale+™ MPSoC ZCU104 to evaluate with benmarks. This
is a very complete board with a large number of capabilities intended to be used in a lot

of different applications.

L)

Figure 3.1 Zynq™ UltraScale+™ MPSoC ZCU104

With the most relevant for this project are listed in table 3.1}

5g23

Zynq UltraScale+ XCZU7EV MPSoC
PL-Side SODIMM DDR4
USB 3.0 Transceiver and USB 2.0 ULPI PHY

SD Card Interface connector

N N | DN | W=

Programmable Logic JTAG

27 Display Port connector

Table 3.1 Relevant components for this project

3.1 Data Acquisition System Design

The diagram depicts the data acquisition system. The input is a camera sending a
video stream via USB 3.0 to the PS. This communication is facilitated by the USB Video
Class driver, transmitted to the PL for data processing. After processing, the results are
returned to the PS and transmitted to the Display Port block for external display. The
communication between the Display Port and the monitor is handled by the kmssink

plugin. Figure[3.2}

59 24

Monitor Host PC

e
il

s -1

SEE 3 CAM

Ll

USB30 | [Display |
{U""C D”"e’k :) ZCU104 Evaluation Board | Controller

L 4
AX
F'y
¥
CNN JTAG
t | Controller |
Zyng MPSocC IP
¥
}_, Processing system
‘ b - Peta linux OS
- Bare-metal app
3 ()

Vsupply

() T — T EY

Figure 3.2 System architecture

The input data is transmitted from the camera through the USB3.0 block on the PS
to the CNN within the PL. Therefore, an intermediary block connecting the PS and PL
is necessary for the camera data to reach the CNN. Hence, the MPSoC IP block needs to
be added to the system.

The operating principle of the MPSoC differs from how a processor operates when
communication between peripherals (I/0) and memory occurs via DMA. The central
processing block, A53 ARM Cortex (APU), retrieves input data from peripherals (1/0)
transmitted to the PS memory via DMA to be sent to the PL. After processing in the
PL, the data is transmitted back to the PS memory, and then transferred to the peripheral
devices (I/0) via DMA.

Additionally, a VCU (Video Codec Unit) block is required to encode the input data
from the camera to reduce the stored data size, saving memory space.

However, the transcoding process, switching between encoding and decoding (Transcod-

ing), i.e., switching between the process of writing data to DRAM in the PS performed

6029

by the Encoder and the process of writing data to DRAM performed by the Decoder,
may encounter bandwidth congestion at a data rate of 60 frames per second with an
image size of 1920x1080. Therefore, the solution to this issue includes:

* The communication and data transmission process after encoding by the Encoder
(part of VCU) to the PS’s DRAM remains unchanged.

* The communication and data transmission process between the Decoder and the
PS’s DRAM will pass through transmitting the decoded data to the DRAM block
in the PL via the VCU DDR4 Controller block. Then, the data in the PL’s DRAM
will be copied to the PS’s DRAM via the PS’s DMA block.

3.2 Integrating CNN into the Data Acquisition System

Since the input for CNN will be a single RGB frame rather than a video stream,
there will be some changes compared to the data acquisition system described in section
3.1. In this section, the encoded frame data will be stored in the RAM of the APU block
(consisting of 4 Arm Cortex AS53 cores) instead of storing it in the DRAM of the PS.

Then, the data of this frame will be decoded, stored in the PS’s DRAM, and the
DMA block will be used to read the data from memory and transfer it to the CNN.
Therefore, the block diagram will be as follows [3.3}

Figure 3.3 System block diagram

So the data flow when deploying Petalinux onto the system will consist of 4 stages:

1. Data captured from the camera is a video streamed into the DRAM on the PS. It is
then sent to the VCU for encoding one frame and saved as an H264 encoded .ts file

in the /home/ directory of Petalinux.

6120

2. Utilizing the imread() function from OpenCV to read the .ts file saved in the /home/
directory and perform decoding. The data is then converted from YUV color space
to BGR and then to RGB using the cvtColor() function. Finally, the decoded image

is written into the /dev/mem directory using the imwrite() function.

3. Reading the decoded RGB image file from stage 2 and transferring it to the CNN
through the DMA block.

4. After processing in the CNN block, the output image is exported and saved into the
/dev/mem directory. /home/ : .ts -> (imread())BGR -> (cvtColor() RGB) -> (imwrite()
write in /dev/mem RGB, CNN -> output;mage— > /dev/mem

Step 1 Step 2
Zynq US+ MPSoC
ﬁetalinux running on APU \
DRAM PS }—)[vcu (I h)
[ome imread() cvtColor()

camera » s |—>{ Ber RGB

. J
Step 3 imwrite()
Step 4 (Idevimem v)
output_image

[DMA J—)[CNN] put_imag :: output_image l [EGQ

A Q y

Figure 3.4 Diagram showing data flow

The .ts file is exported and saved in the /home/ directory for easy retrieval and
comparison with the original image to calculate the compression ratio. After that, it is
decoded and saved in /dev/mem/ to be sent to the CNN via DMA.

3.3 System deployment

An overview of the steps to deploy the system on Zynq MPSoC will be as shown
in (3.6}

6227

Step 1: HW Platform creation Step 2: Build a Linux OS platform Step 4: Boot the application

) A
>
ynd gg; :\:‘PSOC Vivado .xsa Petalinux IIBOOT.BItr;l
‘—)l system rootl mage.u

A

SD Card

n2cube
devicetree

Step 3: Build the application
\

limage_class.cc |—-)(
aarch64-Xilinx-
model.elf o
Linux-gcc
| dma.c l—)\

image_class.elf

Figure 3.5 Steps to deploy the system

Deploying the system involves four steps. The first step is designing the blocks
in Vivado and exporting them to a compressed directory containing the entire hard-
ware description file (.xsa file). The second step is configuring Petalinux to run on the
ZCU104 FPGA. This step also involves synthesizing files such as drivers for the DPU
block (dpu.ko), the device tree for DPU, the bitstream of the design from step one, and
files for the bootloader to generate the final file Boot.bin. The third step is developing
the software application for DPU and exporting it to an elf file. The fourth step is load-
ing the files exported in steps two and three onto the SD Card to program the ZCU104
FPGA through the SD Card port. Now, let’s delve into the details of each step.

3.3.1 Design blocks on Vivado

The first step 1s to design the hardware on the PL side and export it as a .xsa file.
The blocks will be designed in Vivado as depicted in Figure 3.3 However, it will only
include blocks with primary functions, along with AXI Interconnect, Reset, Clock, and

other necessary blocks.

Then, perform the steps of synthesis, implementation, and generation of Bitstream
for the design. Afterward, export the hardware design as a .xsa file. Next, proceed with

deploying Petalinux onto the designed system.

3.3.2 Build application

In this project, we utilize the GStreamer framework as a multimedia tool com-
patible with Petalinux to control the data acquisition process and support data storage.
GStreamer includes drivers for USB, Display Port, and VCU. Hence, data acquisition
from the camera and its storage in the PS’s DRAM, VCU operations, and data transmis-
sion from the PS’s DRAM to the Display Port are all supported by GStreamer.

6328

Storing data after encoding to .ts files in the /home/directory can be done through

Unix Shell using command-line operations.
Therefore, the application needs to be built with two processes:

» Reading the encoded .ts file in the /home/ directory, decoding it back to RGB for-
mat, and then writing it to the /dev/mem/ directory.

* Initializing DMA, setting parameters for DMA, and reading RGB image files stored
in /dev/mem/ and transferring them to CNN.

Then, the application will be compiled with the aarch64-xilinx-linux-gcc toolchain to
generate the executable file. Copy the executable file to the SD Card.
Finally, the files generated during the Vivado, Petalinux, and Application building

processes will be copied to the SD Card as follows:

» PL bitstream: The file generated from the design circuit after running the Synthesis,

Implementation, and Generate Bitstream processes.
e FSBL: The first and crucial part of the boot process into the SoC.
* U-Boot

* ATF (Arm Trusted Firmware): Provides security software for the ARMvS architec-
ture. This file is specific to Zynq MPSoC.

These four files are merged into the Boot.bin file and copied to the SD Card. In which,
Image.ub and Boot.bin, along with the application file, are loaded into the boot area of
the SD Card, while Rootfs is loaded into the root area of the SD Card.

Step 1: HW Platform creation Step 2: Build a Linux OS platform Step 4: Boot the application
h A
ynq US+ MPSoC Vi ST] BOOT.BIN
ivado xsa F
DPU IP Image.ub
E | ’ ‘ | ‘)—)[system rootl i \
A
)
n2cube SD Card
devicetree

Step 3: Build the application

limage_class.cc |—-)(
aarch64-Xilinx-
model.elf .
Linux-gcc
| dma.c l—)\

image_class.elf

Figure 3.6 Steps to deploy the system

6427

CHAPTER 4. RESULTS

4.1 Python Results

Firstly, we evaluated our model in Python, assessing the model based on MSE
loss, PSNR, and SSIM. The results obtained from training the model with the MNIST
dataset for 100 epochs were MSE loss = 0.008, SSIM = 0.889, and PSNR = 69.30. The
simulation results through python are depicted in the figure

=

=

Compressed Reconstructed
Image Image

Raw Image

Figure 4.1 Auto Encoder result

Our input images have a size of 28 x 28. After passing through the encoder, the
image size reduces to 128, which is more than 6 times smaller than the original image.
Upon going through the decoder, the original 28 x 28 image is reconstructed with high
quality.

After validating the model using Python, the model parameters, including weights
and biases, are exported for loading into Vitis HLS. Subsequently, the model is tested
using C++ to verify the results.

4.2 Verification

After completing the coding and simulation process, we proceeded to synthesize
the source code to evaluate the performance and resource utilization of the circuit. We
divided the process into two main parts: Encoder and Decoder, making it convenient to
track and determine the specific performance of each part.

6530

Schematic ?_@ax

- e [«) C | 22cells 5010 Ports 562 Nets £

Figure 4.2 Auto Encoder Block

4.2.1 Encoder
4.2.1.1 Results after Synthesis

After synthesizing the Encoder circuit in Vivado, we obtained the following results:

Encoder Part Latency
+ Latency:
* Summary:
o ———— Fmmmm———— Fmmm e ——— Fmmm e ———— Fmmmmm—— o m———— o ———— +
| Lateney (eyeles) | Latency (absolute) | Interval | Pipeline |
| min | max | min | max | min | wmax | Type |
Fommmm B #ommmmmmmmm o Hommmm Fommmmm o Fmmmmmmmm +

| 14685] 14685] ©.147 ms| ©.147 ms| 14413] 14413] dataflow|
A g S S S

+ Detail:

* Instance:

e e Frrmrr - - e e L e LT L B R Frrmmre - +
| | Latency (cycles) | Latency (absolute) | Interval | Pipeline|
| Instance | Module] min | max | min | max | min | max | Type |
e e ——— t SELELE L - e - - - e +
Jeonvl_U@ |conwl | 14412 14412| 9.144 ms| 9.144 ms| 14412| 14412] no|
|pooll_U@ |[pooll | 12548 12548| 8.125 ms| 09.125 ms| 12548] 12548] no|
Jconvz_U8 |conw2 | 4235| 4235 42.350 us| 42.358 us| 4235] 4235] no|
pool2 U@	pool2	1572	1572] 15.720 us	15.728 us	1572] 1572] no		
econv3_U@	conw3	723	723	7.23@ us	7.23@ us	723 723	no
pool3 U8	pool3	517	517 5.170 us	5.17@ us	517] 517 no		
O — T —— TR —— T dmmmmmmmm—e dmmmmmm———— T U O —— T +

Figure 4.3 Encoder Part Latency

We measured and verified the processing time parameters of the Encoder circuit,
including both overall time and time for each instance block. DSP, FF, LUT, and DRAM
Utilization Parameters in the Encoder Block

661

== |Jtilization Estimates

* Summary:

Frm o L TR R T R TR +

| Name | BRAM 18K| DSP | FF | LUT | URAM|

oo T —— ERE— TR TR — SRR +

| DSP | - - - -l -

| Expression | -1 -1 8| 2| -1

|FIFO | -1 -1 495 348 | -1

| Instance | .| 1212| 445841| 278624| |

| Memory | - - - -l -

|[Multiplexer | -1 -1 -1 -1 -1

|Register | - - - -1 -

oo T —— ERE— TR TR — SRR +

| Total | 8| 1212| 446336 278966| 0|

oo T —— ERE— TR TR — SRR +

| Available | 12| 88| 35200| 1760@| @]

oo T —— ERE— TR TR — SRR +

[utilization (%) | @] 151s| 1268] 1585 @]

Frm o L TR R T R TR +

+ Detail:
* Instance:
SR —— ERE T ——— TR TR — TRRR TR +
| Instance | Module| BRAM 18K| DSP | FF | LUT | URAM|
SR —— ERE T ——— TR TR — TRRR TR +
|convl UB |convl | @| 135| 21982| 18138| 8|
|conv2 U8 |conv2 | @] s585| 253511 153676] @]
|conv3 U8B |conv3d | || 492| 13e983| 87732| 8|
|pooll U8 |pooll | o] o 22439] 8574 0|
|pool2 U8 |pool2 | @] e s535| 3942| o
|pool3 U@ |pool3 | 8] e a4e5| e562| @
SR —— ERE T ——— TR TR — TRRR TR +
| Total | | | 1212| 445841 278624 o
SR —— ERE T ——— TR TR — TRRR TR +

Figure 4.4 Number of DSP, FF, LUT and DRAM in the Encoder Block

We assessed and recorded the usage of resources, including DSP (Digital Signal
Processor), Flip-Flops (FF), Look-Up Tables (LUT), and DRAM memory. This ensures

optimal resource utilization.

4.2.1.2 Generated Circuit and Main Blocks

After synthesis, we integrated Verilog files into Vivado to create the circuit. Below
is the generated circuit and a description of the main blocks:

6732

Encoder

full_in_TDATA[39:0
conv 1 _U0

A 4

pool 1_out_U

A 4

conv 1 out U pool 1_UO

A 4

pool 2_out U |« pool 2_UO |« conv 2_out_U |« conv 2_U0

ull_out_TDATA[39:0]

A 4

conv 3_U0

conv 3_out_ U

pool 3_U0

\ 4

Figure 4.5 Main encoder block

Generated Circuit: Overview of the overall structure of the circuit after synthe-
sis. Design Blocks: We listed and described the main blocks of the Encoder circuit,
including logic components and signal processing units. Specifically, key blocks such as

Multiplication Block, Pipeline Block, and... are presented, explaining their interactions

within the circuit.

6833

Project Summary x| Schematic x 2
“« s @@ X E 0@+ = C iscs 1mnes -
pool2_Uo

(]
mux 14 4 40_1 1 U279

din0[39:0]

din1(39:0]] S setaut

s=1v0_10[39:0]
S-getaut_11(39:01

din2(39:0] s=1b0
din3(39:0] S= default

dina[39:0] s=1b0
din5[39:0] 5= default

mux_4_0_i
0[39:0] s=1b0__10[39:0]
11(39:0]

s=1v0 _10[39:0]
11(39:0]

o[39:0) Sedetau_11(39:0) 0139:0] | doutizs:0)

= default = default

din6(39:0] 5180
din7(39:0] S detout RTL_MUX
mux 3.1
mux_1.4i T o139:01 .
ding[39:0] sevo 00901 [o) _— - S setut -
din9[39:0 et (390
in9[39:0] Sedefout_11(39:0] | < RTL_MUX RTL_MUX
amozs0 Trmx | p——
din11(39:0; o - mux_16_i
din12(39:0 se1v0_10[39:0)
din13(39:0; Segetout11(39:0] | 2030:0)
din14(3:0!
- mux_15.i < RTL MUX
s=1b0__10[39:0] o
11(39:0]
RTL_MUX
Sncode_mux 144 4011
encode_pool2
i Multipl Block
Figure 4.6 Multiplexer Bloc
flow_control_loop_pipe_U
@
ap_loop_init_reg
RST
ap_clk
X S
ce Q
D
SET
RTL_REG_SYNC
ap_continue
ap_loop_exit_done - ap_continue_int
ap_loop_exit_ready ‘ ‘ ap_done
ap_ready_int ‘ ap_loop_i
ap_ready
ap_loop_
s=1b1 10
S=default 1L
T RTLMUX
ap_rst
ap_start ap_start_int
y,

encode_flow_control_loop_pipe

Figure 4.7 Loop pipe Control

4.2.1.3 Encoding simulation results

Similar to the decoding process, we conducted a thorough analysis of the encoding

results using

69 4

SIMULATION - Simulation - encode

encode.wefg*

Q W a a I

Sources

% HLS Pre ummary
W AESL_inst_encode_activity
% AESL_inst_encode

® Design Top Signals

Objects

% Test Bench Signals

% Internal Signals

nces

 COutputs
 return(axis)

8 full_out_TREADY

Protocol

8 full_out_TVALID

Inputs

% return(axis)
'8 full_in_TREADY
8 full_in_TVALID

 full_in_TDATA[39:0] 0.796078439801931 0.996078429743648

Sim Time: 150765 ns

Figure 4.8 Encoder waveform

SIMULATION - Simulation - encode

o || encode.wefg* a

sl W @ a ¥ ¥ o 1 T &
¢ 102,215.592 ns

ol 102,000.000 ns 1¢2,200.000 ns 102,400.000 ns 1102,600.000 ns 1102,800.000 ns 1103,000.000 ns 103,200.000 ns 103,400)

8 full_out_TREADY

t_encode._activity -
% AESL.inst_encode
% Design Top Signals
= jre Bench Signals|
% Internal Signals
% COutputs
)

Protocc

'8 full_out_TVALID

¥ full_out_TDATA3; 0.0 [X) 0.0 0.0

% Clnpu

% retum(a

& full_in_TREADY I M fl M N | N | IS Y | S | S —

8 full_in_TVALID

> % full_in_TDATA(39:0§ 0. [X) 0.01176470518 0.79607843980 0.99607842974...) 0.85882353968. ..) 0.13725490961.

< > <

Con: Ve

Sim Time: 150765 ns

Figure 4.9 Encoder waveform

7033

SIMULATION - Simulation - encode

. || encode.wefg*

Q W @ @ I ¥ < I T o

104,004.592 ns N

102,800.000 ns 103,000.000 ns 103,200.000 ns 103,400.000 ns 103,600.000 ns 103,800.000 ns 04,000.000 ns

/el 10 Handshake

8 full_out_TREADY
8 full_out_TVALID
* full_out TDATA[394 0

0.7960784398... 0.99607842974... | 0.85882353968...) 0.13725490961. ..

>

Sim Time: 150765 ns

Figure 4.10 Encoder waveform

4.2.2 Decoder
4.2.2.1 Results after Synthesis

Similar to the Encoder, we obtained results after synthesizing the Decoder circuit,
including: DSP, FF, LUT, and DRAM Ultilization Parameters in the Decoder Block:

2736

Decoder
full_in_TDATA[39:0
conv 4_U0 »| conv 4 out U > uf p 4_UO > ug p 4 _out U
Y
5 out Ul 5 U0 |« conv 5 out U |« conv 5_U0
Y
full_out_TDATA[39:0]
conv 6_U0 »| conv 6_out U > uf p 6_UO

Figure 4.11 Main decoder block

2037

== [tilization Estimates

o e . e e T +

| Name | BRAM_18K| DSP | FF | LUT | URAM]|

oo oo FR— S S — TR +

|DSP | - - - -l -l

|Expression | -1 -1 | 2| -1

|FIFO | -1 -1 594 | 408| -1

| Instance | 9| 1695| 574162| 342711 0|

| Memory | -| - - -l -l

|Multiplexer | -1 -1 -1 -1 -1

|Register | - - - -1 -

o e . e e T +

| Total | 9| 1695| 574756| 343121| o]

e e o o R S oo +

|Available | 120| 8e| 35200| 17600 |

o oo ER— o T — FHE——— +

|Utilization (%) | 7| 2118] 1632] 1949| 8]

o e . e e T +

+ Detail:
* Instance:
. . . T T e T +
| Instance | Module | BRAM 18K| DSP | FF | LUT | URAM|
o mmm e dom e S R D e o +
|convd_UB | comvd | 8| 467| 132168| 85354| 8|
|convs_UB | convs | 8| 498| 138623| 88939 8|
|convé U8 |conve | o| s86| 221464 133764| @]
| conv7_Ua | conv? | e| 144| 77193 32759| 8|
|upsampd U@ |upsampd | 3] 8| 1102 496 8|
|upsamp5_U@ |upsamp5 | 3| 8| 1138| 497 8|
|upsampé_U@ |upsampt | 3| 8| 2498 982 | 8|
e e oo TR A R TR +

Figure 4.12 DSP, FF, LUT, and DRAM in Decoder Block

We continued evaluating and documenting the resource usage in the Decoder block,
ensuring optimal resource utilization. We measured and verified the processing time pa-

rameters of the Decoder circuit.

+ Latency:

* Summary:

gommmmcsas femmssaaas e T fmmmesas gommmmas $emmmmmmnas +

| Latency (cycles) | Latency (absolute) | Interval | Pipeline |

| min | max | min | max | min | max | Type |

#mmmmmmm - Fmmmm - Hmmmmmmm - e Fmmmmm Fmmmmm $rmmmmmm - +

| 14928] 14928| ©.149 ms| ©.149 ms| 14519] 14619] dataflow

Lt T T

+ Detail:
* Instance:
D B Fommmmm e ommm s #ommmmmmmm oo Fommm - e #ommmm e R +
| | | Latency (cycles) | Latency (absolute) | Interval | Pipeline|
| Instance | Module | min | max | min | max | min | max | Type |
Fmmmm e ———— - Frmmmmm——— e Frmmmm e ———— o Fmmm e +
| comvd_UR | convd | 362| 362] 3.620 us| 3.629 ws| 362 362| no| | |
|upsampd U8 |upsampd | 51| 521 5.218 us| 5.218 us| 521 521| na|
| eonvs_ue | convs | 874| 874] 8.748 us| 8.748 us| 874 874| no|
|upsamp5_U@ |upsampS | 2857 2057 20.570 us| 20.579 us| 2057| 2057| no|
| convé_u@ | convé | 4171 4171 41.718 ws| 41.718 us| 4171 4171 no|
|upsampé_UB |upsamps | 12561 12561 @.126 ms| ©.126 ms| 125%81| 12561| ne|
| come7_UB | comv? | 14518| 14618| 9.146 ms| ©.146 ms| 14618| 14618| no|
o g e

Figure 4.13 Decoder Part Latency

7338

4.2.2.2 Main Blocks of the Decoder Circuit

We listed and described the main blocks in the Decoder circuit, providing a clear

understanding of the structure and interactions between components.

This information offers a detailed and comprehensive view of the performance,
resource utilization, and structure of both the Encoder and Decoder after the synthesis
and simulation process. This data serves as a foundation for further optimization and

adjustments to the circuit if necessary.

4.2.2.3 Decoding Results

We created waveforms to visualize the correspondence between the input and out-
put data during the decoding process. The following aspects were observed and ana-
lyzed. We compared the input data with the corresponding output data, ensuring that the

decoding process produced the expected results.

Q W @ @ X ¥ o Kol o= oo &

¥ full_in_TDATA[39:0]

Figure 4.14 Input Data vs. Output Data

Examining the data in relation to clock signals, we assessed the timing and transi-
tions of the data during the decoding operation.

7439

AMULATION - Simulation - decode

Figure 4.15 Clock Signal and Data Transition

Examining the data in relation to clock signals, we assessed the timing and transi-

tions of the data during the decoding operation.

decode.wefgr

Q W @ a ¥ ¥ o 4 = o o] L]

5,720,000 ns (3,740] 000 0.000 ns 800,000 0.000 ns (3,540,000 n o000 500,000 000 ns (3,940.000 ns |3,960.000 n
0.0

% full in_TDATA[39:0]

Figure 4.16 Stored data

And there are input values that are only stored in the buffer and window without

any output.

7540

4.2.3 AutoEncoder
4.2.3.1 Results after synthesis

Similar to encoding and decoding results, I also have synthesis table

e e S +
| Name | BRAM 18K| DSP | FF | LUT | URAM|
et e R e e +----- +
|DSP | -1 - - - -
| Expression | - | - | 8| 2| -1
|FIFO | - - 1386 938 -1
| Instance | 4| 4328| 169156| 110468]| 0]
|Memory | -1 - - - -
|Multiplexer | = | = | = | = | =
|Register | -1 - - - -
e e S +
| Total | 4| 1611| 170542| 111408]| 0]
et e R e e +----- +
|Available | 624| 1728| 460800| 230400| 96|
e e $------ $----- +
|utilization (%) | ~0| 93| 37| 48| 0|

e D e e e +----- +

Figure 4.17 Utilization Estimates

In the summary figure4.17, I change bit length representation to 24 bits to fit with
the capabilities of ZCU104. So that, you can see the number of DPS, FF, LUT doesn’t

not surpass these resources available in ZCU104.

* Summary:

L i - F=---- R Frmmmmrr e R e +
| RTL Ports | bir | Bits| Protocol | Source Object | C Type |
L i - #=---- Frmmmmmm - Frmmmmrr e R et E +
full_in_AXI_TDATA	in] 24	axis	full in AXI V data V	pointer	
full_in_AXI_TKEEP	in] 3] axis	full_in_AXI_V_keep_V	pointer		
full_in_AXI_TSTRB	in] 3] axis	full_in_AXI_V_strb_v	pointer		
full_in_AXI_TUSER	in] 2] axis	full_in_AXI_V_user_V	pointer		
full_in_AXI_TLAST	in] 1] axis	full_in_AXI_V_last_V	pointer		
full_in_AXI_TID	in] 5] axis	full_in_AXI_V_1id_v	pointer		
full_in_AXI_TDEST	in] 6	axis	full_in_AXI_V_dest_V	pointer	
full_in_AXI_TVALID	in] 1] axis	full_in_AXI_V_dest_V	pointer		
full_in_AXI_TREADY	out] 1] axis	full_in_AXI_V_dest_V	pointer		
full_out_AXI_TDATA	out] 24	axis	full_out_AXI_V data_V	pointer	
full_out_AXI_TKEEP	out] 3] axis	full_out_AXI_V_keep_V	pointer		
full_out_AXI_TSTRB	out] 3] axis	full_out_AXI_V_strb_v	pointer		
full_out_AXI_TUSER	out] 2] axis	full_out_AXI_V_user_V	pointer		
full_out_AXI_TLAST	out] 1] axis	full_out_AXI_V_last_V	pointer		
full_out_AXI_TID	out] 5] axis	full_out_AXI_V_id_V	pointer		
full_out_AXI_TDEST	out] 6	axis	full_out_AXI_V dest_V	pointer	
full_out_AXI_TVALID	out] 1] axis	full_out_AXI_V dest_V	pointer		
full_out_AXI_TREADY	in] 1] axis	full_out_AXI_V dest_V	pointer		
ap_clk	in	1	ap_ctrl_hs	AutoEncoder	return value
ap_rst_n	in	1	ap_ctrl_hs]	AutoEncoder	return value
ap_start	in	1	ap_ctrl_hs]	AutoEncoder	return value
ap_done	out] 1	ap_ctrl_hs]	AutoEncoder	return value	
ap_ready	out] 1	ap_ctrl_hs]	AutoEncoder	return value	
ap_idle	out] 1	ap_ctrl_hs]	AutoEncoder	return value	
B e +----- +----- e Fommm e e e e e B +

Figure 4.18 Interfaces in CNN Block

2641

Figure summary the signal port in our system. There are AXIS protocol used
for input, output data and some control port. So to connect with other block, we need to

setup axis protocol for transfer data.

4.2.3.2 Simulation Results

We also export waveform of test data results for AutoEncoder network. And the

results exactly the same as the data I have trained in Python.

Figure 4.19 Wave form for AutoEncoder

4.2.3.3 Register Transfer Level generate

Figure illustrate AutoEncoder IP Block we generate after co-simulation.

AutoEncoder 0

=4 s axi control
=] VETELS Y full out AXI 4

==+ full_in_AXI
= ap clk ﬂ interrupt

<@ ap_rst_n

Autoencoder (Pre-Production)

Figure 4.20 AutoEncoder IP Block

4.3 Compare with python

Next, we will compare the simulation results using Vitis HLS and Python based on
two key metrics, MSE and PSNR.

2742

== Python Decode
@ HLS Decode

0.150

0125

MSE
°

0.075 /WWWW

0.000

Image

Figure 4.21 Stored data

Figure illustrate the simulation results of applying the autoencoder to 100 test
images using Python and HLS. The results indicate that the MSE between Python and
HLS is significantly negligible.

Peak-Signal to Noise Ratio Value

@ Python Decode
HLS Decode

- ANV AMAAN WA ANNVNA

PSNR

Figure 4.22 Stored data

Figure [4.22] depicts the PSNR results of 100 images using Python and 100 images

7843

using HLS. The results also demonstrate the similarity between the Python model and
the HLS simulation. Importantly, our model utilizes fixed-point representation and has
been tested on ZCU104.

4.4 Implementaion on ZCU104

After create SoC Block of the all system, we synthesis generate bitstream and im-
plement on ZCU104 through Vivado.

We have already installed Petalinux in host PC to control all the process. However
I still get a trouble in resize data, because my data have the size 28 x 28 while the input
originate data get from the camera have the size 1920 x 1080. Therefore, they do not
share the same ratio, leading to our inability to directly input data into the network.
Currently, we can only transmit image data into the IP MP SoC block. Then, we save the
data onto the SD card and display it on the screen. This process is illustrated in Figure

4.23

Figure 4.23 Implementation on FPGA

7944

CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENT

The Autoencoder project for image compression and decompression has yielded
positive results, showcasing the power of CNN technology in optimizing the representa-
tion and restoration of visual information. The Autoencoder model not only effectively
compresses image data but also retains crucial features, reducing storage space and en-

hancing the efficiency of image transmission and processing.

Furthermore, the decoding capability of the model is highly impressive, accurately
and flexibly reconstructing original images from compressed data. This highlights the

adaptability and self-learning capacity of the model across diverse image types.

In advancing the project, our focus is on optimizing the model, expanding its appli-
cations into various domains, integrating with other models such as GANs, incorporating
it into real-world applications, handling large datasets, and enhancing security measures.
These progressive steps aim to transform the Autoencoder model into a versatile and

powerful tool applicable across a wide range of real-world scenarios

g0 45

REFERENCES

[1] Aydin, Seda Guzel and Bilge, Hasan Sakir, "FPGA Implementation of Image Reg-
istration Using Accelerated CNN", journal: Sensor

g7 40

Reconfigureable Autoencoder based on Reduced
Instruction Architecture

Nicholas Teffandi
School of Electrical Engineering
and Informatics
Institut Teknologi Bandung
Bandung, Indonesia
13221084 @mahasiswa.itb.ac.id

Abstract—This paper will discuss a proposed design of recon-
figurable reduced instruction architecture for an Autoencoder.
The proposed design consists of several main components start-
ing from the Control Unit, Arithmetic Logic Unit, Memory
block, Instruction memory, and LUT for activation function.
The proposed design contains a prewritten special instructions
set that are customized to run autoencoder algorithm, where
both instruction and data are represented in 16-bit format.
The instruction contains 4 fields with 4 bit width each, which
are operation code, source address 1, source address 2, and
destination address. On the other hand, the data are represented
in two’s complement fixed point representation format, where
both exponent and fraction took 8 bits. The proposed design
is verified based on 3 different cases, a 3x3 circle, cross, and
greyscale circle, all of which show that the proposed design can
learn input information and can reconstruct it with minimal
error. The verification is done with the assumption the data is
normalized/denormalized outside of the architecture, and all of
the weight and bias is initialized with the value of 0.5 with a
learning rate of 0.5. The design then implemented on PYNQ-Z1
Board where the board utilization is very small compare to the
available resources. The design has maximum frequency of 150
MHz while only consuming 0.115 W of power. Those figure of
merits shows that the design is able to be used in parallel to
process larger images.

Index Terms—Autoencoder, Instruction, Architecture, Design

I. INTRODUCTION

In recent years, the widespread adoption of artificial in-
telligence (AI) and machine learning (ML) techniques has
led to a growing demand for high-performance and energy-
efficient hardware implementations of neural networks [1].
Autoencoders, a class of unsupervised learning models, have
proven to be powerful tools for feature learning, data compres-
sion, and anomaly detection [2]. To fully unleash the potential
of Autoencoders in real-world applications, it is imperative
to explore hardware acceleration solutions that can meet the
increasing computational demands while maintaining energy
efficiency.

Traditional software implementations of Autoencoders on
general-purpose processors often struggle to deliver the re-
quired throughput and low latency, especially when dealing
with large-scale datasets or real-time applications [3]. As a
result, there is a growing interest in the development of dedi-

Fauzan Ibrahim
School of Electrical Engineering
and Informatics
Institut Teknologi Bandung
Bandung, Indonesia
13221030 @mahasiswa.itb.ac.id

82

Achmad Novel
School of Electrical Engineering
and Informatics
Institut Teknologi Bandung
Bandung, Indonesia
13221057 @mahasiswa.itb.ac.id

cated hardware architectures tailored for efficient execution of
Autoencoders algorithms.

This paper presents a comprehensive exploration of the
hardware implementation of Autoencoders using Verilog, a
hardware description language widely used for digital cir-
cuit design. By translating the Autoencoders architecture into
hardware, we aim to leverage parallelism and optimize the
computational efficiency of the model. This hardware-centric
approach is motivated by the need to accelerate Autoencoders
inference tasks, making them suitable for deployment in
resource-constrained environments, such as edge devices and
IoT applications.

II. PROPOSED DESIGN

The Autoencoder algorithm is built upon a neural network
system designed to reconstruct the input observation/image
with the lowest error possible. Autoencoders’ main component
consists of an encoder, a latent feature representation, and a
decoder. The encoder and decoder can be written as a function
g and f respectively that depends on some parameters, in this
case, weight and bias. [4]

zo = f(g(xi))

By nature, that function needs to be run in sequential order
between one iteration and the other. In digital circuits, there are
generally two ways to approach it, one with a state machine
and the other is based on instruction sets which form the
foundation of modern computers.

The proposed design is built with similar characteristic of an
architecture that supports a reduced ISA instruction. However,
this architecture is specialized and optimized to calculate the
Autoencoder Algorithm for machine learning purposes. The
architecture consists of several critical component such as
Instruction Memory block, program counter, Memory block,
Arithmetic and Logical Unit (ALU), Control Unit (CU), Mux
and Demux selector, Sector selector block, and Look Up Table
(LUT) table for Sigmoid and first derivative of Sigmoid func-
tion (refer to figure 1). The architecture dataflow is handled
by the Control Unit, where this module is responsible for
controlling the ALU, Memory Block, and Mux and Demux
to ensure correct execution of the instruction.

dest_control

op_sel

instr[15:12] en_alu
»| opcode +
oprnd2_sel —r
en_writeMem > Uperandi I; E
0x0001=————3 operand1 control 4 AU £ z
—» operand2 s — Unit en sellvem f=— o M s
= d2 It
0X0000————carry CLA : [*“"e'a“ resu
instr[11:8] ml 0x0000—> -
R S data_out
—)+> Sector Selector v
> in out v
_ﬁ> Counter instr{7:4] >
data_in S
= data_out | :
- write_en
31> Sector Selector —‘ »{ read_sectort
»{ read_sector2 —>» Sigmoid LUT j}——»
R - read_datat || M
addr instruction instr]] read_addr1 g
Instruction) v | instr{7:4] »| read addr2
Memory instr{4:0] T m 2 - read_data2 |— —» Relu —> 4
- 7 data_out »{ write_sector
—){> Sector Selector »| write_adar
clk write_data Memory Sigmoid
g Differentiation LUT »

Fig. 1. Top Level Architecture

TABLE I
INSTRUCTION FORMAT

5[14131211 [10]9][8[7][6]5][4[3[2][1]0

opcode addrl

l

addr2 addr3

l l

TABLE II
NUMBER FORMAT

4131211][10][9][8][7][6[5]4[3][2]1]0

exp

frac

l

A. Arithmetic and Logical Unit

The ALU used in this architecture are capable of three math-
ematical operations, addition, subtraction and multiplication,
which all are sufficient to fully run Autoencoder algorithm,
the ALU block consists of a CLA (Carry Look Adder) [5]
and Multiplier, the decision of using CLA as an adder is to
optimize its operation speed with the cost of area. However,
to calculate a logistic function such as Sigmoid and Sigmoid
first derivative, a Look Up Table (LUT) is utilized for the
computation to reduce execution time and complexity of the
calculation.

B. ReLU (Rectified Linear Unit

ReLU is an activation function where it passes any input
value to its output,only if the input is greater than zero, else
it will produce zero output for negative input. This activation
function is implemented with combinational gates where the
MSB of the data which is the sign bit is inverted and connected
with AND gate for every remaining bit of the data.

83

C. Lookup Table

The LUT is one of the ways to decrease computing time by
saving the value of functions in a certain range. The LUT
is produced by calculating the output of the function then
convert the value into the binary representation used in the
design, then each output is paired up with the respective input.
From its inherent characteristics, LUT occupies a big space
in the chip which corresponds to large resources in hardware.
However, it will be very beneficial for large structures that use
the same functions multiple times which is the case here in the
Autoencoder Algorithm. The Sigmoid function consists of an
exponential function which itself is a constant. Aside from the
Sigmoid function, the algorithm also uses its differential that
still has the exponential part. Therefore, using LUT for both
functions will save a great deal of execution time compared
with calculating it manually.

D. Memory Block

Memory block is constructed to store and load every calcu-
lation for every instruction (refer to figure 2), the memory
contains a 16 address where every address can store and

load 16 bits of information, to further expand the number of
addresses without compromising the format of the instruction,
another block is required which is the sector selector. The idea
is that every memory block with 16 addresses will generate 16
times, with each of these memory block referred as sectors, a
sector selector block is used to select those sectors separately
(split sector reading and writing), to change sector selection,
an additional instruction is required.

E. Instruction Memory Block

The Instruction Memory block contains a prewritten in-
struction for the architecture to execute, the instruction is
written such that it will perform mathematical operation nec-
essary for Autoencoder algorithm. The program counter will
increment the reading address of the instruction memory until
one cycle of forward propagation and backward propagation
is completed, then it will loop until the specified training
number. Secondly, the fetched instruction contains 4 critical
information, which is the operation code, source address 1,
source address 2 and destination address, the details of the
instruction structure will be discussed later, this information
will be fed into the memory block and CU to be executed
at positive edge and the resulting value will be written back
into the memory block at negative edge of the clock, hence
every instruction is executed in single cycle. Finally, if the
instruction requires special function such as ReLu (Rectified
Linear Unit), Sigmoid and Sigmoid first derivative, the mux
will change the memory writeback data source to those special
function block output.

E. Control Unit

Control Unit is a module responsible for controlling and
managing other supporting module via control signals, it
functions as a block for interpreting operational codes to
signals to control the flow of data and activating functions
on other blocks.

G. Instruction Format

The system uses 16-bit data width i.e 16-bit instructions and
also 16-bit data. The instruction format can be seen in table
I. The opcode is used to determine which signals to activate
in the control unit. Then, the other 12-bit data is parsed into
three sections to determine which memory location to be used
in the current calculation. For data, it is only used to represent
numbers with the MSB as sign, the next 7 bits (bit 8-15) as
the exponential part and the 8-bit LSB as the fractional part
as seen in II. The number represented by the data uses the
conventional base of 2 calculation with the negative number
is the two’s complement of the positive representation.

The approach of the design consisted of several functions
separated into 3 types of function including math function,
memory access function, and LUT accessing function. These
functions will be called with the opcode on the instruction,
here are the operation codes for accessing these functions that
are available within the design refer to table III,

84

TABLE III
OPERATION CODES
Opcode Function Explanation
0000 Addition Adding first address with second address
0001 Subtraction Subtracting first address with second address
0010 Multiplication | Multiplying first address with second address
0011 Memory Accessing memory to write current address
Write to memory
0100 Sector Select Accessing MUX for selecting memory sector
0101 Sigmoid LUT | Converting operation result for correlated
sigmoid Value within the LUT
0110 ReLU Applying ReLU Function if address1 has the
appropriate condition for RELU
0111 Sigmoid Dif- | Converting operation result for correlated
ferential LUT sigmoid differential Value within the LUT
1111 NOP Do nothing

With these opcodes the design can be easily manipulated
into other functionality by altering the operations within
instruction memory.

The design of this system provides a step-by-step process
for implementing math functions in neural network design.
To begin, the instruction will select the appropriate memory
sector for the first sector input, addrl, followed by addr2 as
the second sector input, and then record the result sector in
addr3, refer to table I for the instruction format. The instruction
will then guide the Control Unit (CU) to enable the memory
sector selector while disabling the writing function to ensure
that the selected memory sector is not altered. Once the sector
is selected, the instruction can perform the desired function
with addrl and addr2 as inputs by identifying the address of
the variable within the selected sector and saving the result
into addr3 within the sector that has been picked already.

H. Design novelty and advantages

There are several advantages to the proposed design, firstly,
the design is done with consideration of minimal hardware
cost while maintaining its speed. For every cycle instruction,
there are no idling architecture component, which implies
that there are no computing resources wasted. Secondly, the
architecture is expandable, meaning that the number of pixel
increase can be easily accommodated by generating more
of the same architecture as the basic architecture are able
to handle 3x3 pixel images, albeit it needs to be modified
to optimize it, i.e. since all architecture run by the same
control unit and instruction, the top level can utilize a data bus
while the remaining architecture shared a common control unit
and memory instruction. Furthermore, the design proposed
employed a LUT for a logistic function dan its first deriva-
tives, which are faster and easily reconfigurable and opens
the possibility of sharing the same LUT for multiple basic
architecture, hence optimizing its cost effectiveness for the
total architecture. Finally, due to nature of the architecture,
changes in instruction can be easily done, therefore offering
flexibility in the mathematical operation of the Autoencoder.

III. DESIGN VERIFICATION

The verification is done with setup and flow illustrated in
Figure 5, where the autoencoder are compared based on 3

w
(o]
=1
o
£ o = =
=1] @ s
5 &8 2 3 S
@
[g 2 o, D
g ‘o_ IQ & ° <3
read_sector_selector_1 @ - N 3 O 2
\ \ \ 6 2 T
1£)i(4 bit 4fi1 l
read_data_1 >
M memory block sector 15]
read_data_1 U |«
«—— .
X .
1 - . 4 bit D
<« . .
E data_write
—
memory block sector 3 M
< X
M | memory block sector 2
read_data_2 U <
— <
X < P
2 memory block sector 1 |
read_data_2

T

read_sector_selector_2

Fig. 2. Memory block architecture

White =1
Black =0

Fig. 3. Image Verification, (a) Cross (b) Circle

cases, circle, cross and greyscale version of the circle. Note
that all the weight and bias are initialized with value of 0.5,
and it is assumed that the data input pixel are normalized, and
the output of the system have not been de-normalized. The
process of normalization and denormalization are assumed to
be located outside of the proposed design.

Refer to Table V and IV, where the second column multi
rows denote pixel output (ascending from top down), the
verification is done with python to observe the difference
between the proposed design with the python version of
the algorithm. The verification is done with training number
of 10000 training, where 3 random iteration is chosen and
compared. For the cross cases, the observation is done at 1,
20, and 10000 iteration, where if it is directly compared with

85

Fig. 4. Image Verification, (c) grayscale circle

the python cases, it is evident that there are small difference
between python generated value with its counterpart, this is
due to the limited precision with the proposed design where
it is limited to 8 bits of fraction, hence resulting in slight
deviation from python result which is ran on 64 bit machine.
On the other side, the circle case shows similar error with
the observation conducted at first, second and last iteration. In
summary, the proposed design has been successfully imple-
mented into HDL code where the design is able to adapt to
its input pixels, for more details on the simulation waveform,
please refer to Appendix A for both cases.

To further benchmark its performance another test is con-
ducted where the pixel input is modified into a grayscale.
For the test, a greyscale circle is selected as input, where the
ring outside of the circle is set as 0.75 (normalized) and the
centre is 0.25 (normalized). Notice that on table VI, where

initialize ROM with
desired input pixel
(for this case O or X)

A

A

initialize all weight
and bias

to be 0.5

training = training + 1

A

training number = 10000

true

false

train autoencoder

compare output with
python Autoencoder

Fig. 5. Verification Scheme

at the third iteration there are significant deviation between
python model and the proposed design, however as the training
number increased, the gap between the model has shrunk
significantly. Hence proving that the autoencoder can adapt
to grayscale input. For more detail, please refer to Appendix
for the simulation wave.

IV. IMPLEMENTATION RESULT

The proposed design is implemented into PYNQ-Z1 Evalu-
ation Board via Vivado Design Suites, where the metrics such
as circuit domain which is categorized into LUT, LUTRAM,
FF, DSP the performance metrics which composed of several
crucial parameters (maximum clock frequency allowed, the
power consumption, the latency and the critical path speed)
can be found at table VII. The performance metrics are
obtained by trial and error of the Design Rules Constraint
of the clock period input period, which need to comply with
its total propagation delay from the proposed design, which is
6.50 ns.

In Table VII, it is evident that the presented design har-
nesses a fraction of the board’s maximum capacity. This
observation highlights the design’s modularity, allowing for
seamless integration with identical instances to collectively
manage significantly larger pixel loads. This highlights a key

86

strength of the proposed design, showcasing its scalability
through parallel processing capabilities. The ability to com-
bine multiple instances of the proposed design enables the
concurrent processing of larger-sized images, exemplifying the
efficiency and adaptability of the proposed system for handling
substantial computational workloads. This modular approach
not only optimizes resource utilization but also positions the
design as a versatile solution for image processing tasks
of varying scales within the scope of parallel computing
paradigms.

Based on the performance metrics acquired, using this
design in parallel with the same instances to handle a much
larger image would still yield the same latency since its
instantiation process has its own 3 by 3 image. However, it
is important to note that the increase number of this design
used would definitely increase the power draw and also the
board utilization. Therefore, when applicating this design in
parallel, the user has to keep in mind those limits or they can
also process data in groups instead of processing it all at the
same time.

V. CONCLUSION

In conclusion, the successful hardware implementation of
Autoencoder through the utilization of an instruction-based

TABLE IV
CROSS PIXEL OUTPUT

Iteration Python | Proposed Design
0.9526 0.9492
0.9526 0.9492
0.9526 0.9492
0.9526 0.9492
1 0.9526 0.9492
0.9526 0.9492
0.9526 0.9492
0.9526 0.9492
0.9526 0.9492
0.0068 0.0
0.9941 0.9961
0.0068 0.0
0.9941 0.9961
20 0.0068 0.0
0.9941 0.9961
0.0068 0.0
0.9941 0.9961
0.0068 0.0
0.0 0.0
0.9999 1.0
0.0 0.0
0.9999 1.0
10000 0.0 0.0
0.9999 1.0
0.0 0.0
0.9999 1.0
0.0 0.0
TABLE V

CIRCLE PIXEL OUTPUT

Iteration Python | Proposed Design
0.9933 0.9922
0.9933 0.9922
0.9933 0.9922
0.9933 0.9922
1 0.9933 0.9922
0.9933 0.9922
0.9933 0.9922
0.9933 0.9922
0.9933 0.9922
0.9941 1.0
0.9941 1.0
0.9941 1.0
0.9941 1.0
2 0.0000 0.0
0.9941 1.0
0.9941 1.0
0.9941 1.0
0.9941 1.0
0.9999 1.0
0.9999 1.0
0.9999 1.0
0.9999 1.0
10000 0.0000 0.0
0.9999 1.0
0.9999 1.0
0.9999 1.0
0.9999 1.0

architecture demonstrates the efficacy of our approach. The
employed architecture not only facilitates the execution of
instructions but also affords modularity, enabling seamless
scalability for processing larger images. The ability to employ
multiple instances of the same architecture without compro-

87

TABLE VI
CIRCLE PIXEL OUTPUT (GREYSCALE)

Iteration Python | Proposed Design

0.6729 0.3438

0.6729 0.3438

0.6729 0.3438

0.6729 0.3438

3 0.4601 0.0980
0.6729 0.3438

0.6729 0.3438

0.6729 0.3438

0.6729 0.3438

0.7465 0.6797

0.7465 0.6797

0.7465 0.6797

0.7465 0.6797

59 0.2549 0.2188
0.7465 0.6797

0.7465 0.6797

0.7465 0.6797

0.7465 0.6797

0.7499 0.7500

0.7499 0.7500

0.7499 0.7500

0.7499 0.7500

175 0.2500 0.2500
0.7499 0.7500

0.7499 0.7500

0.7499 0.7500

0.7499 0.7500

TABLE VII

FIGURE OF MERITS

FPGA Board Utilization

Resource Used | Available Utilization(%)
LUT 1048 53200 1.97
LUTRAM 376 17400 2.09
FF 61 106400 0.04
DSP 1 220 0.45
Performance Metrics
Maximum Frequency Power Critical Path Speed
150 MHz 0.115 W 4.407 ns

mising computational efficiency signifies a crucial advantage
in handling larger image datasets. This not only enhances the
system’s adaptability to diverse image processing requirements
but also underscores its potential for accommodating increased
computational demands. The testing affirm the viability and
versatility of the proposed approach, positioning it as a
promising solution for efficient and scalable Autoencoder
implementations in hardware, with broader implications for
diverse applications in the realm of image processing and
beyond.

REFERENCES

[1] S. Haykin, “Neural networrks a comprehensive foundation.” Prentice
Hall, 2002.

Y. B. Ian Goodfellow and A. Courville, in Deep Learning. MIT Press,
11 2016.

H. Tong, B. Liu, and S. Wang, “Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning,” Information
and Software Technology, vol. 96, pp. 94-111, 2018.

U. Michelucci, “An introduction to autoencoders,” 2022.

S. Brown and Z. Vranesic, “Fundamentals of digital logic and vhdl
design,” 2009.

(2]
(3]

(4]
(31

Design and Implementation of a Learning Circuit for
Kaomoji Generator with Autoencoder

Masato Shotoku, Takuya Hirahara, Kaito Tsuchiya
Graduate school of Engineering, Chiba University, Japan
Email: m.shotoku@chiba-u.jp

Abstract: We designed and implemented a learning
circuit for Kaomoji generator using autoencoder. A
simplified version of MLP-Mixer was used for the
autoencoder's neural network. We designed the system
with software/hardware co-design and implemented on
a System on Chip (SoC). Learning on the designed
system was 7.33 times faster than on the PC.

Keywords—Kaomoji, Autoencoder, ML P-Mixer, SoC

I. INTRODUCTION

We focused on "Kaomoji," which are composed of
characters, to apply autoencoder to characters, and
designed hardware to generate Kaomoji. The hardware
was built using software/hardware co-design and
implemented on a SoC.

An overview of our system is shown in Figure. 1.1.
In learning, Processing System (PS) sends input data,
which is also teacher data, to Programmable Logic (PL),
and PL updates the parameters. In generating, PL
generates Kaomoji using random numbers generated
internally. This Kaomoji is sent to PS and displayed on
a monitor.

CPU(PS) FPGA(PL)
- AXI Stream AXI Network
(D Send Data Stream
(Input) | Forward |
@ Send Start Signal AXI LITE AX1 | Backward |
(Set Mode) LITE
| Update |
(3) Wait Finish Generate
. AXI Stream o
(@) Receive Data tream New
(Output)

Figure. 1.1. System overview.

II. KAOMOJT
Kaomoji are a combination of letters and symbols that
represent a person’s facial expression and emotion. We
focused on Kaomoji used in Japan, not on "emoticon"
used in other countries.
("w)/ ~N(* V%
(z0=) ~("oM/ (

Figure. 2.1. Examples of Kaomoyji.

(*
TOT)

Vo) /
m(-_-)m
The preprocessing performed by our system is to

convert each of the characters in Kaomoji into a one-hot
vector. The preprocessing is performed as follows.

88

1. Disassemble the Kaomoji into individual characters.
2. Align to 10 characters by adding [PAD] to missing
parts and convert unknown characters to [UNK].

3. Number each character using the list of characters

(Table. 2.1.).

4. Convert each number to a one-hot vector.
Table. 2.1. List of characters and numbers.

0 PaD]| 12 24 @ |36 48 ~ [60 |
1 UNK| 13 ~ |25 > |37 49) |61 |
2 (|14 * |26 n |38 ! |50 0|62 =
3 T |15 % [27T < |39 ° [51 > |63 °
4) |16 , |28 / |40 & |52 ; |64 |
5 17 _ |29 - |41 0|53 = |65

6 18 / |30 ¥ |42 O [58 = |66 T
7 o |19 ¥ (31 @ |43 m |5 « |67 V
8 20 — (32 o |44 = |5 V¥ |68 o
9 |21 33 V |45 57 69 0
10 7 |22 v |34 16 58 : |70 O
11 23 V|35 47 v |59 @ |11 #

III. GENERATION OF KAOMOJI
We tried two methods of controlling the latent vector,
the input to the decoder, to generate new Kaomoyji.

A. Generation of Similar Kaomoji

The latent vector obtained by inputting Kaomoji to the
encoder is added to a random numbers before being
input to the decoder to generate Kaomoji that are similar
to the input.

Latent. Vector

Random Number

Figure. 3.1. Network for similarity generation.

B. Generation of New Kaomoji

The random numbers are set directly to the latent vector
and input to the decoder to generate new Kaomoji that
are not in the learning data.

Latent Vector

(=n=))

Random Number

Figure. 3.2. Network for new generation.

IV. NEURAL NETWORK

A. Network Model
Figure. 4.1 shows the network model and Table. 4.1
shows the definitions of the constants in this model.

Input (10x72)
l _
Embedding (10x12)
!
Mix1 (12x12)
}
Mix2 (12x1)
l -
Mix3 (10x12)
}
Dense (10x72)
I]

Output (10x72)

Encoder

Decoder

Figure. 4.1. Network model.

Table. 4.1. Constants used in the network.
Name Value Detail
N 10 Max charcters of Kaomoji
cnum 72 Number of available characters
emb 12 Dimensions of character vector
hid 12 Dimensions of latent vector
batch 32 Batch size

B. Forward Propagation

(a). Embedding Layer in Forward
In Embedding layer, each one-hot vector obtained in
preprocessing is transformed into a 12-dimensional
vector. The role of this layer is to acquire relationships
between characters. For example, that" < "and " * " are
similar, and that " (" and ") " are symmetrical.

The process in this layer is the matrix product of
matrix x, and weights w,. x. is the matrix obtained

(b). Mix Layer in Forward

In Mix layer, the matrix product is performed after
transposition to prevent row-by-row independence of
the computation. After transposition, different weights
are used for each row. The method is based on MLP-
Mixer[1], a network used in the image processing field
that does not use convolution or attention.

Only Mix]1 layer is described since each Mix layer
is calculated in the same way, just the matrix shape is
different.

The process in Mix1 layer is to transpose input X1,
computed row by row, and combined to obtain ;.

Am1,i = Xm1,i * Wma,i T bml,i (4.2)
Ym1i = tanh(aml,i) (4.3)
Xm1,1 Ym1,1
xti =] Xmui VYm1 =| Ymui
xml,emb yml,emb
N 1XN hi
Xy € R xemb’ Xm1i € R1% , Ym1 € Rembx id
1xhid Nxhid
aml,i' bml,i'yml,i ER » Wmii ER

Since the output of Mix2 layer is latent vector and
not matrix, the vectors are transposed, replicated by 10,
combined in the row direction, and then input to Mix3
layer.

(c). Dense Layer in Forward

The process in Dense layer is the matrix product of the
input x4 and the weights wy, and using SoftMax
function to obtain yg.

aq = X4 - Wq (44)

yd,i = SoftMax(ad,l-) (4-5)
e*i

SoftMax(xJ) m (46)

-

£, . . V4 = Ydl
by combining to one-hot vectors in the row direction.
Ve = Xe - We (4.1) de
Nxhid hidxcnum
Ve € RNxemb’ Xe € RNX cnum We € [REnumxemb Xq € R , wg ER
Nx 1x
ad; yd € R Cl'lU.m’ ad'uyd'l € IR cnum
R |
I Skip-connections Skip-connections Mixer Layer |
: Channels :
| N Patches Y = MPZ)T |
1l - = I MLP1 }—p = MLP 2
' 2> g 2 L {(MLP1 }—» /TN 2 MLT 5 I
I 5 > e \T a5 I {(MLP I} 5 MLP 2 !
| z > & &} —{MLP1 }—p = MLP 2 1
el = MLP2 }—» I

Figure. 4.2. MLP-Mixer[1]

2

89

V. LEARNING

A. Creating Kaomoji Dataset
For this model, a dataset of Kaomoji was created before
learning. The Kaomoji were collected from the Web
site[1][2] by Web scraping using the Python library
BeautifulSoup.

Source code. 5.1. Example of Web scraping.

def collect_kaomoji_copy(url):
res = requests.get(url)
soup = BeautifulSoup(res.content, 'html.parser')
el = soup.find('table’,
attrs={'class': 'kaomoji' }).find_all('input')
return el

This function reads data from the argument URL and
then retrieves Kaomoji by specifying HTML tags.

We augmented the data by inverting the left and
right sides of the Kaomoji. As a result, the dataset
contains 10,300 Kaomoji.

Table. 5.1. Example of data augmentation.

Before After
(zv =% (*zVvV =) Asymmetry
(o "V Do o(C V~ o) Asymmetry
(zws=) None Symmetry
d>n<)) None Symmetry

B. Back Propagation
In autoencoder learning, the output values y obtained
by forward propagation and the input values x, which
is also teacher data, compute the loss. In our system,
cross-entropy-loss is used as the loss function, which is
calculated by the following equation.

batch N cnum

E= Z Z Z xl]klogyljk
batch

X,y € RNxcnum

(5.1)

(a). Dense Layer in Backward
The values obtained by back propagation in Dense layer
are the gradient Gg of E for the weights wy and the
gradient Dy of E for the input x4. The equations for
obtaining these are given below.

0E

Gd = a_VVd = x;‘r . ds (52)
O0E
Dd = a—xd = ds . W;lr (53)
_Yx
" batch 54

Gd:Wd € Rhidxcnum’ x,y, ds c RNxcnum
Dd' xq € RNXhid

ds are the back propagation values from SoftMax
function.

90

(b). Mix Layer in Backward
The back propagation of the three Mix layers is similar,
so only Mix1 layer is explained.
The values obtained in the back propagation of
Mix1 layer are GWp,q;,Gbyq;, Dy (= 1,2--emb).
Gwp,1,; is the gradient of E for the weight wyp,, ;
and Gby,; is the gradient of E for the bias by, ;.
D1 is the gradient of E for the input xp,;. The
equations for obtaining these are shown below.

! aE !
dml,i =5 = dml,i - f (xml,i) (5.5)
aaml,i
f'(xmi) = (1 — tanh? xp ;) (5.6)
O ,
GWp1, = Wy = x?r;l,i ' (5.7)
m1,i
OF
Gby1 =57—= d’mli (58)
' abml,i ’
E
D1 = Tomns =d'm1i Wi (5.9
xml 1 m1,1
m1 - I xmll ml - ml,i
xml emb ml emb

Nxemb 1xN
Xm1,Dm1 € R » Xm1,i>Dm1i €ER

1xhid
aml,i ’ Gbml,i ’ bml,i ’ dml,i ’ d mi,i 'yml,i ER

GWml,i 'Wml,i € RNXhid

dm; are the back propagation values from Mix2 layer.

Since the back propagation values for Mix3 layer is
vector and not matrix, the back propagation values D3
is converted to the vector by adding row by row before
propagation.

(¢). Embedding Layer in Backward
The values obtained by back propagation in Embedding
layer is the gradient G, of E for the weight w,. The
equation for obtaining G, is shown below.
0E
Ge = oW,
Ge'We = chumxemb, Xo €]RNxcnum' de c]RNxemb

X are the input values and d, are the back propagation
values from Mix1 layer.

=xJ-d, (5.10)

C. Updating Parameter
The updated formula for the optimization algorithm
Momentum used is given below.

(5.11)
(5.12)
G is the gradient and w is the parameter of the layer.
The hyperparameters are ¢ and . The values in this

model are given below.
a =0.001, =09

Ver1 = fre — aG

W1 = W + Vpyq

FPGA(PL)
AXI WDATA State Machine
32, R
7 v o .
AXI_WADDR V State Main
32, | AXI
2ol } |
AXI_RDATA LITE
- 32,’ State Forward State Backward
AXI_RADDR ‘i‘
32, 1 1k 3 |y state_ 3 Jp state_
7 updatefr /’zcm_gmd "ﬂ)rward Abackward
Network
AXIS_DATA
87 .
AXIS_LAST - —
Ly » AXI .
CPU (PS) 7 Embedding Random Mix
J\XISfV;\I.ID Stream |[—] Layer Layer Forward Layer
bl oo M|
AXIS_READY Input
-1 27
—7
[y
AXIS_DATA
87
) Compare
AXIS_LAST - Layer — +
—F AXI
’ Dense Tanh
AXIS_VALID Stream I Laver
—! / (()utput)) -ayer Backward Y
AXIS READY Softmax | | — Tanh | -
. v > Layer Input

Figure. 6.1. General view of the circuit.

VI. CIRCUIT STRUCTURE AND OPERATION

A. Operation Mode on Circuit

In our system, PS controls PL in AXI4-LITE format.
Control signals and their addresses in AXI4-LITE
format are shown in Table 6.1.

Table. 6.1. Control signals and addresses.

Address (32bit) Data (32bit)
0 next, run, rst_n
1 mode (2bit)
2 fin_backward, fin_forward, fin_main

The lower 3 bits of address 0 are assigned to the
reset signal "rst n", the start signal "run", and the signal
"next", which is used when the circuit is operated
continuously. the lower 2 bits of address 1 are assigned
to "mode", which indicates the operation mode of the
circuit (Table. 6.2), and the lower 3 bits of address 2 are
assigned to the end signals.

Table. 6.2. Circuit operating modes.

Mode Value | Detail

TRAIN 0 Calculates gradient and Updates parameter
FORWARD 1 Forward propagation and Outputs Kaomoji
SIMILAR 2 Generates similar Kaomoji

NEW 3 Generates new Kaomoji

91

The following is a description of process in each
mode. First, in FORWARD mode, the following
process is performed.

1. Send Kaomoji data from PS to PL using AXI4-
Stream (Input).

Send "run" signal from PS to PL in AIX4-LITE
format for forward propagation.

Obtain the number of each character in Compare
layer and stores it in the FIFO.

Send end signal from PL to PS in AXI4-LITE format.
. Send output data from the FIFO to the PS using
AXI4-Stream (Output).

To continue forward propagation, send "next" signal
and perform steps 1. through 5. again.

In SIMILAR mode, random numbers are added to the

Mix2 layer output. In NEW mode, all Mix3 layer inputs

are set to random numbers. The random numbers are

generated by Random layer using Xorshift[4] algorithm.
Finally, TRAIN mode is described below.

1. The processing is performed up to Compare Layer
in the same way as in FORWARD mode.

Back propagation is performed from SoftMax Layer
to obtain the gradient of each parameter, which is
stored in RAM.

After calculating the gradient for one batch, the
parameters are updated.

2.

. When the parameter update is completed, PL sends
end signal.

5. When training multiple batches, send "next" signal

from PS and perform steps 1. through 4. again.

B. Learning on Circuit

In learning, parameter updates are performed in mini-
batch learning, with a batch size of 32. In our system,
mini-batch learning is performed by computing the
gradient multiplied by 1/32 and adding them together 32
times for one batch of data. Since the gradient values
need to be initialized for each batch, the state machine's
zero_grad is used to initialize the gradient during the
first forward propagation.

C. Layer Module
The schematic of Dense Layer is shown in Figure. 6.2.
The basic structure of Embedding Layer, Mix Layer and
Dense Layer are all similar. They are composed of
"Forward" for forward propagation, "Backward" for
back propagation, "Optimizer" for updating parameters,
and RAM for storing parameters.

There are two RAMs for storing weights, RAM wt
and RAM w. The two RAMs allow for independent
forward and back propagation, thus can be executed in

a pipeline.
1 1
:l'updatc: /l,zero_grad

d_forward q_forward
12x12x24 12X12%x24
- i
e Forward 7
10k 6% 18%rdac:
Araddr (" 1\\-?1dd
10,
4
RAMwt | ° | Transpose
4
6x18
it 10 6x18
wdata *raddr *_J“m
rdata
ox 18, RAM w
4
107, 6x18F 10 6% 18
ﬂ’:lddl’ rdata J(mdd’r /’Wdil[‘d
raddr S
i Optimizer w
7
10k 6x18 1o} 6x18f
fraddr” Ardaa ~ qwaddr fwdata
Y
RAM v
rdata
618 RAM grad
10T, 6x18) 10 6% 18
/r:lddr Ardata I'\"v:lddr ,wdzlla
raddr
q_backward 10, ; d_backward
12x12x24 7 Backward 12x12% 24
i £
4 4
3

Figure. 6.2. Dense Layer.

92

VII. DESIGN INNOVATION

A. Reduction of Bit Width

Before designing the model in hardware, an emulator
was built to verify the learning and generation
operations. The emulator was designed with fixed-point
precision, and the number of bits for each parameter and
the forward and back propagation values were reduced
to maintain at least 60% accuracy.

B. Pipeline processing and Parallelization

In this design, pipelining was used for each of the
following three tasks: sending and receiving learning
data, forward and back propagation in one batch, and
data readout and computation using the values. For
forward and back propagation, pipelining was made
possible by using different Block RAMs for each. For
calculations where the input values are matrices,
parallelization was performed row by row. With these
innovations, the number of clocks required to learn one
epoch was reduced by 1/177.

0

t

I CALCULATE
Forward For\]n.lard Forgard Forvsvard For\gard
Backward 'g':';:f:gﬁ B '1 d | B v d X d|B : d
Update e

Figure. 7.1. Pipeline of forward and backward

C. Reduction of Resource Usage in Mix Layer

The three Mix layers are computed using the same
module multiple times to reduce the resource usage.
This innovation reduced the amount of LUTs, FFs, and
DSP slices used in the three Mix layers by 59.9%,
62.3%, and 62.5% respectively.

VIII. EVALUATION

A. Resources Usage in System

ZCU104[5] in AMD Xilinx was used for the actual
operation. For device control, PYNQ[6], an OS image
targeting SoC, was used. Table. 9.2 shows the resources
and the maximum operating frequency of our system.
Xilinx Vivado 2023.2 was used as the logic synthesis
and place-and-route tool.

Table. 8.1. Resources and Maximum Frequency.

Resources Utilization Utilization [%]
LUT 99774 43.30
LUTRAM 935 0.92
FF 160785 34.89
BRAM 1235 39.58
DSP 694 40.16
10 4 1.11
BUFG 2 0.37
FMrZ:ILEZ::/ [MHz] 126.18 -

B. Evaluation of Speed and Accuracy

Figure. 8.1 shows the learning time of the emulator on
PC (Table. 8.2) and our system on SoC for the epoch.
The clock frequency was set to 125 MHz.

Table. 8.2. Details of the PC for the emulator.

CPU Intel Core i7-11700 2.50GHz
RAM 64 GB
oS Ubuntu 18.04 LTS

—— Emulator on PC
System on SoC

80 4

60 1

Time [s]

204

T T T T
60 80 100 120 140

Epoch
Figure. 8.1. Learning time for epochs.

Figure. 8.1 shows that the learning time at 100
epochs was 61.5 seconds for the PC and 8.39 seconds
for the SoC. Thus, the learning with the designed
hardware was about 7.33 times faster than the PC
learning.

Next, Figure. 8.2 shows the accuracy of the emulator
on the PC and our system on the SoC for the epoch.

0.8
—— Emulator on PC

System on SoC

0.7 1

0.6 1

0.5 1

0.4 1

Accuracy

0.3 1

0.2 1

0.1+

0.0 1

T T T T
80 100 120 140

Epoch

T T T T
0 20 40 60

Figure. 8.2. Accuracy for epochs.

These accuracies were calculated for each character
of Kaomoji. Figure. 8.2 shows that the maximum
accuracy for the SoC is 70.9%.

C. Result of Kaomoji Generation

The results of similarity generation and new generation
on ZCU104 are shown below. The probability of new
generation was about 20% in a subjective evaluation.

93

Table. 8.3. Examples of Similar Generation.

Base Examples of Similar Kaomoji
NV OV
R L A B A
SCow %)/ * w *)
NY*) * w-))J
Table. 8.4. Examples of New Generation.
Examples of Success Examples of Failure
N (v)-! "~)
) (1)) ()1
v (zr JO V) Lo) !
v)/ (+v-)/ () -0
SRR (-1 (V") /

IX. CONCLUSION

We focused on "Kaomoji" to apply autoencoder to
characters, and designed and implemented a learning
circuit for Kaomoji generator. The Kaomoji generator
was constructed using a five-layer neural network
inspired by MLP-Mixer. Two methods were used to
generate Kaomoji: similarity generation and new
generation. The model achieved a 70.9% accuracy,
which meets the target of "more than 60% accuracy,"
considering the fixed-point precision and the generation
rate of Kaomoji. The learning using our system on the
SoC was 7.33 times faster than that using the emulator
on the PC.

As a future prospect, the accuracy can be improved
by using different models such as VAE (Variational
Autoencoder), which introduces probability distribution
in the latent vector.

Although our system mainly targets Kaomoji used
in Japan, it could conceivably target emoticon used
mainly in other countries (Figure 9.1).

-) 8) :-(:D
Figure. 9.1. Examples of emoticon.

REFERENCES AND LINKS

[1]1lya Tolstikhin. et al. “MLP-Mixer: An all-MLP
Architecture for Vision.” arXiv preprint arXiv:
2105.01601, 2021.

[2] https://kaomoji-copy.com, Accessed on 2024/02/28.

[3] https://kmoji.com, Accessed on 2024/02/28.

[4] Marsaglia George. “Xorshift RNGs.” Journal of
Statistical Software 8, no. 14 2003: 1-6.

[5] https://japan.xilinx.com/products/boards-and-
kits/zcul04.html, Accessed on 2024/02/28.

[6] http://www.pyng.io, Accessed on 2024/02/28.

Development of a Hazard Map Prediction Circuit
Using an Autoencoder

Tomoki Kanno, Kosuke Mori, Takaho Ueyama
Graduate school of Enginering, Chiba University
Chiba, Japan
Email:as_tomo_as@chiba-u.jp

Abstract—We designed a circuit for an autoencoder that
generates hazard maps from geographic information and built
a system on an FPGA that outputs the generated hazard maps
as 3D models. In addition, it was designed to achieve a circuit
size that could fit on an FPGA evaluation board and to speed up
the computation processing time.

Keywords— Autoencoder, FPGA, Pipelining, 3D model,
Hazard map, disaster preventation

I. INTRODUCTION

In recent years, natural disasters have become more severe
and more frequent. In order to protect human lives from such
disasters, it is important to predict the risk areas in advance
and take all possible countermeasures. A hazard map is a map
that shows the expected disaster areas, the extent of damage,
evacuation sites, and evacuation routes, based on predictions
of the damage that would occur in the event of such a natural
disaster. Examples of hazard maps are shown in Figure 1.
While the use of hazard maps in natural disasters is important
to minimize the damage caused by disasters, hazard maps do
not cover all areas at risk of disasters. Therefore, there is a
problem that the area is erroneously perceived as a safe area
even though it is at risk of disaster. For this reason, we aimed
to design a hardware that can predict a hazard map displaying
various disaster risks in an arbitrary region by using an
autoencoder, which was the design theme of this LSI design
contest. Using this hardware, we thought it would be possible
to visually confirm the possibility of various disasters
occurring in any given area's topography, and thus solve the
problem, and took on the challenge of designing the circuit.

D Alert Area for Landslide

D Special Alert Area for Landslide
D Planned foundation survey area

[/ Evacuation site

Fig. 1. Hazard map around Chiba University
(reference: TEHHE - BKENHF—F~< v 7[1])

LSI Design Contest in Okinawa 2024

The specific operation of the system is as follows. By
inputting 32 x 32 elevation data into the autoencoder, which
consists of three layers, the system outputs data indicating
which areas of the land are at risk from a certain disaster.
Outputting these data as a 3D model, the system can generate
a hazard map for any given area.

Il. LEARNING METHOD

Initially, the details of the autoencoder are described.
Figure 2 shows an outline of the autoencoder created by this
system. An autoencoder is a network in which the number of
units in the input and output layers are the same and the input
is restored. It consists of two parts: an encoder that extracts
features from the input data to create a compact representation,
and a decoder that reconstructs the original input from the
compact representation. Suppose the number of units in the
input and output layers is n and the number of units in the
hidden layer is m. Define the input matrix x and the output
matrix o in the autoencoder as in equations (1) and (2),
respectively.

x= (xg, %5, ..6)" (1)
0= (04,05, ..0)7)
where x,, is the nth input value and o,, is the nth output value.
In the model shown in Figure 2, the computation is performed
according to equation (3)
o=f(Wf(wx+b)+ b) (3.3)
where w, W are weight matrices, b, b are bias matrices, w €
R™*" b € R™*!, w € R™*", and b € R**'. In
addition, f(-) is a function called the activation function,
which is used to improve the accuracy of learning.

This system is designed to output hazard maps for an area
when arbitrary geographic information is input via an
autoencoder, and it is necessary to train the system to handle
various land shapes. Therefore, we created a dataset consisting

Input layer

Output Layer

x i 0
1024 dimensions [B 1024 dimensions

Fig. 2. Autoencoder used in this system

=
;ﬂ.

Fig. 3. Part of the datasets

of geographic information data and hazard map data necessary
for training. The elevation distribution of any given land in
Japan was obtained by referring to the "Hazard Map Portal
Site [2]" provided by Geospatial Information Authority of
Japan. The data was then normalized to 10 m intervals of
elevation in the range of 0 to 2550 m to generate a 256-level
grayscale image. In addition, an image of the disaster hazard
areas in the same area was created by painting them white, and
these data sets were used as training data (Fig. 3). We selected
three types of disasters for which this system outputs hazard
maps: landslide disasters, tsunamis, and floods. The number
of datasets used in this training was 2128 for landslide
disasters, 952 for tsunamis, and 672 for floods, for a total of
3752 training datasets. In addition, 33 landslide disaster sets,
4 tsunami sets, and 4 flood sets were created as test data. Using
these data, training was conducted on an autoencoder that
outputs hazard maps for landslide disasters, tsunamis, and
floods when geographic information is input.

The training of the autoencoder was done entirely in
Python. Table 1 shows the each parameters of autoencoder
designed for this system.

Table. 1. Each parameter in learning

0

64
ReLU Function

Epoch

Batch size

Activation Function

Error function Mean Square Error

Optimization Method Adam
Learning start weights All random
Learning start bias All 0

Figure 4 shows an example of the results of learning under
these conditions. After the autoencoder training is completed,
the final vector of weights and biases is processed
appropriately and output as text data in binary notation. Using
this data, the autoencoder process can be implemented in an
FPGA

Input

F

Correct

hd -

Fig. 4. Part of the learning results

Actual output

95

I1l. CIRcuIT DESIGN

The FPGA evaluation board used in the implementation
was the Zyng FPGA made by AMD-XilinX. Table 2 shows
the evaluation board specifications and development
environment. In addition to the FPGA, this evaluation board
is equipped with a SoC. Table 3 shows the specifications of
the PS part of the SoC.

Table. 2. Evaluation Board Specifications

Zynq Ultra Scale+
FPGA
MPSoC ZCU104
Logic cell 504,000
DSP Slice 1,728
Block RAM 11[Mb]
AXI4-Stream
Communication Protocol)
AXIl4-Lite
Development environment Vivado 2023.1

Table. 3. Evaluation Board Specifications

Cortex-A53
CPU
1.5GHz 670 CPU
Memory 2.0[Gb]
PYNQ Linux
(O]
based on Ubuntu 22.04
Compiler g++11.2.0
) Jupyter Notebook
Development environment .
version 6.3.0

In this system, the inference part was implemented on an
FPGA, using parameters learned on an emulator. Figure.5
shows an overall diagram of the configured system. The
circuits designed for this system can be divided into two parts:
the AXI communication circuit and the Main circuit, which
performs the calculation and signal control of the autoencoder.
For communication between the PS and PL sections, the Slave
/ Master AXI1-4 Stream Module using the AXI-4 (Advanced
eXtensible Interface 4) [3] standard and an AXI-4 Lite Module
were used. AXI-4 Stream supports data burst transfers and can
transfer a sequence of data at a time instead of having no
address specification. AXI-4 Lite supports transactions with
simple control, and instead of burst transfers, it can be
controlled differently by addressing.

The Main circuit can be divided into three parts: the
Input/Output Data Control circuit, which adjusts the bit width
of input/output data and connects until ready to send/receive
data; PS Operation Status, which controls the autoencoder
circuit from the PS side; and Autoencoder Calculation Module,
which performs the autoencoder operations. The Autoencoder
Calculation Modul is further divided into an Encoder Module
which extracts features from the input data, a Decoder Module
which composes the output data from the features, and a State
Machine which controls the state of these modules. Figure 6
is a schematic of the Autoencoder Calculation Modul.

FPGA board

PS part PL part
Main circuit
Slave
AXI-4 Stream
WRITE INPUT
Hazard Map “;g(Ali Al Module DATA | [Input Data| para
i 64 64 8192
Creation // FIFO-A / Control /
Autoencoder
h Mater Calculation Module
nput IAXI-4 Stream OUTPUT
: AXIS READ
Elevation data RDATA Module e Output Data]ggTzA
64 64 Control Vi
Output #—1 FIFO-B [+ 7
Mask Data N :
3821\/1-111 fifob_wren
~ N
AXI-Lite [~ SIv0-in ™
WDATA 32/
32 / / "
Input/Output /1 ; S%Z-out
g [|axtLie | | AXI4 Lite o=/ PS Operation Status
Control Signals|| pata | | Module | gpy3-out
32 / 32 /
/ 4
Fig. 5. System configuration
CLK .
1 Autoencoder Calculation Module
819; 8192
ENCODE-START Encoder Module Decoder Module OlfTPUT—ENABLE
1
encoder-end cncgglcér-out dchngC-in dlecoder—start
>~
decoder-end
ENCODE-ENABLE] L___ A L
1 loocoocoosomooms - Sommomoooo J
State Machine

Fig. 6. Autoencoder Calculation Modul

e SR [
8192 Padding ! Adder_In
——L Dara — Regrlste-—/LD 24576
Multip |, Shift
@ Add_W Weight| Jier Register 7
10 [\eioht 512
y VVei2 — Mult_Out
ROM 768
Adder
Counter Add B Bias Temp_Bias Encoder
10 . 16 . 24
;)| Bias 7 Shift
ROM Register
HIDE-DATA ReLU In
768 Shift ReLU | 24 e
Register | ReLU Out Function N
n Adder Out
24
24

Fig. 7. Encoder Module

96

Multiplication process
1024 dimensions

VIVA-LNdNI

Additive processing
(tournament-like configuration)

I
L]

Yy v

u

LYYy

Output processing

32 dimensions

C
C

Y

T{g{jyﬁg::::

W-ROM

— [ofRelUH

RelLU
S-Rey]
U

:

B-ROM

Fig. 8. Calculation Process in Encoder Module

VIVA-1NdLNo

Figure 7 shows a schematic of the Encoder Module and
Figure 8 shows a diagram of the flow of processing within the
module. The Encoder Module compresses the input 1024-

dimensional elevation data into a 32-dimensional hidden layer.

One-dimensional elevation data of 1024 x 8 = 8192 bits is
input to the Encoder Module, and a positive sign "0" is added
to the beginning of each data in the Padding Data section
before sending it to the Multiplier circuit. The Multiplier
circuit multiplies the input data and weights. Figure 9 shows a
schematic of the multiplication process in Encoder Module.
Since the input data is 9 bits and the weights are 16 bits, the
result of each multiplication is 25 bits, of which the lower 24

Weight data (16 bit)

nmnnnnnmn-4%D~iuuuuummmummummmd

Decimal point

Sign bit Input data (9 bit)
l-L'—'_|

Multiplication result (25 bit)

nnannn [1]1]o[olo[o]
ofolololo] ™

or & [IJITITIN] [1]1]o[olofo]
1 ; .

Anonnnannon;

[

Multiplication result considering the carry-over of the addition process (24 bit)

Fig. 9. Multiplication process in Encoder Module

Decoder Module

HIDE-DATA|
768

Adder_In
768

Add W Weight| Multiplier

10
(AN

Weight
ROM

Adder

Counter Decoder

Add B
10 16

/ Bias
ROM

Temp_Bias
24

Shift
Register
ReLU_In
ReLU | 24 Ry
N

Function

OUTPUT-DATA|
8192

ReLU_Out
24

Shift |,
Register

7

Adder_Out
24

Fig. 10. Decoder Module

Multiplication process
32 dimensions Additive processing

(tournament-like configuration)

'
11

VAN

Output processing
1024 dimensions

o
S
PR

PR

B-ROM

u

VIVA-LNdNI

LYY Y

VIvVd-LNd1No

{}(j%ﬁ%{/ﬁ:

W-ROM

Fig. 11. Calculation Process in Decoder Module

97

bits are used as the multiplication result. To account for carry-
over in subsequent addition processes, 19 bits are extracted
from the 24-bit data, and depending on the sign, 5 bits of
"00000" or "11111" are added to the beginning. This modified
data is then sent to the Adder Encoder circuit. The Adder
Encoder circuit adds up all the results of the previous
multiplication and sends them to the ReLU function circuit.
By arranging the adders in a tournament-like configuration,
the structure is such that the addition process can be completed
in 10 clocks. The ReL.U function circuit outputs the value as
it is if the sign bit of the input data is 0, and outputs "0" for 24
bits if it is 1. This process is repeated, and "HIDE-DATA" is
output as 1-dimensional data when all 32 dimensions of the
hidden layer data are available.

Figure 10 shows a schematic of the Decoder Module and
Figure 11 shows a diagram of the flow of processing within
the module. The Decoder Module processes the circuit to
reconstruct the input 32-dimensional hidden layer into a 1024-
dimensional output layer. HIDE-DATA" input to the Decoder
Module is sent directly to the Multiplier circuit. Figure 12
shows a schematic of the multiplication process in Decoder
Module. The input data is 24 bits and the weights are 16 bits,
so the result of each multiplication is 40 bits, of which the
appropriate 24 bits are sent to the Adder Decoder circuit as the
result of multiplication. Similar to the Adder Encoder circuit,
the Adder Decoder circuit adds the multiplication results of
the input and weight data, and inputs the results to the ReLU
function circuit. The adder decoder circuit is configured to
complete the addition process in 5 clocks because the adders
are arranged in a tournament-like configuration. The ReLU
function circuit performs the same processing as the Encoder
Module, extracts the decimal 8 bits from each of the 1024-
dimensional data, and outputs them as 1-dimensional
OUTPUT-DATA.

This system further reduces calculation time by pipelining
in three locations. Figure 13 shows a schematic of pipelining.
First, (a) is the multiplier circuit. By performing the
multiplication process 32 times in parallel, the conventional
process of 3 clocks x 32 times = 96 clocks can be reduced to
3 + 32 - 1 =34 clocks. This is an approximately 2.8-fold
reduction in processing time. Second, (b), the Encoder
Module is pipelined 32 times, and the Decoder Module is
pipelined 1024 times. As a result, the Encoder Module can
reduce the number of processing clocks to 1043 clocks, while
the Decoder Module can reduce the number of processing
clocks to 1050 clocks, from 3552 clocks for the Encoder
Module and 10240 clocks for the Decoder Module. These
changes will reduce processing time by a factor of
approximately 3.4 in the encoder module and by a factor of

Input data (24 bit) Weight data (16 bit)

Iolololololo} [f] —(2?— [oJolor[olofzofi[ojofiolo[olo]

Decimal point

Multiplication result (40 bit)

[oTolololololoal

[N

BONARACAAGCE0)

lofojo]

o]

Multiplication result considering the carry-over of the addition process (24 bit)

Fig. 12. Multiplication process in Decoder Module

approximately 9.8 in the decoder module. Third, (c) is
pipelining in the Autoencoder Calculation Module. Since the
clocks required for the Encoder and Decoder are different, the
timing of processing is controlled by the State Machine. This
reduces processing time by a factor of two when processing
multiple sets of elevation data.

Finally, the Hazard Map Prediction circuit that outputs the
results obtained from the autoencoder calculation as a 3D
hazard map is described. An overview of the system of the
Hazard Map Prediction circuit is described. Figure 14 shows
a schematic diagram of data transmission and processing in
the Hazard Map Prediction circuit. When the elevation data
and control signals are output from the PS section to the PL
section, the PL section performs the auto encoder calculation
using those data. Upon completion of the auto encoder
calculation, the data indicating the hazard areas and the
control signal are sent to the PS section. At last, the received
data is processed by the application to obtain a 3D hazard map.
PYNQ (PythonProductivity for Zynq) [4], which is used in the
OS of the PS section, is an open source project provided by
AMD-XilinX, and allows data processing and data transfer to
the PL section using Python. The advantages of using PYNQ
are twofold: applications can be developed in Python and
PYNQ can be easily controlled remotely. This will enable the
development of Python-based applications in the PS section,
and will also make it easier for users to use the system

(a) Pipeline for Multiplier t
| miniMultiplier |
| miniMultiplier |
Bias
. Nt A R
e dder Adder elU
miniMultiplier
miniMultiplier

(b) Pipeline for Encoder / Decoder t
[multiplier | Adder |Bias|ReLu! "
. | Adder [ias]rewu]

Multiplier

[Adder [piaslet]

[muriptier | Adder [pias]rewu]
(c) Pipeline for Autoencoder t
[Encoder| Decoder
[Encoder]| Decoder
[Encodeér| Decoder
Decoder
Fig. 13. Pipelining
PS part Elevation data PL part

PYNQ Control signals

Data transmission Data transmission

AXI-4

Autoencoder
inference section

Hazard Map

creation Hazardous area data

Control signals

]

Fig. 14. Data exchange in Application section

98

remotely, which is expected to lead to practical application as
an loT system. This system is designed to incorporate an
application that displays a 3D model of the hazard map and
allows remote control and file transfer.

IV. SYSTEM EVALUATION

Table 4 shows the circuit size and maximum operating
frequency of the designed circuit. The FPGA operating
frequency is set at 100 MHz. Table 5 shows a comparison of
processing speeds on an actual device. All processes were
measured five times each, and their average values are shown.

Table. 4. Circuit size and maximum operating frequency

Resources Used resources Utilization[%0]
LUT 86021 37.34
LUTRAM 789 0.78
FF 150843 32.74
BRAM 63 20.19
DSP 64 3.7
BUFG 24 4.41
Mggh’;‘#g 161.06[MHz]

Table. 5. compute processing speed

Environment 1 set 64 sets
PC 0.0430[s] 2.5782[s]
FPGA PS part 0.3102[s] 19.663[s]
Development
method 0.0022[s] 0.0042[s]

PC isan AMD Ryzen7 2700 PC on which the autoencoder
was calculated using Python. FPGA PS part is the autoencoder
calculation using Python on the PYNQ project of the ARM
CPU mounted on the PS part of the Zyng UltraScale +
MPSoC ZCU104. Development method is the calculation
process of this system. In the results of the development
methodology, the processing time for 64 sets is only about
twice as long as for one set alone. This is thought to be due to
the processing time required for data input/output and the
pipelined processing of the encoder and decoder. Another
factor contributing to the higher speed of the development
method compared to other methods is the processing in
Python. The interpreter language converts the source code into
machine language sequentially during execution, and the
processing time is also included in the measurement, resulting
in slower processing speed. However, it has the advantage of
being very easy for users to handle in terms of data processing.
For this reason, this development method, in which the main
calculation part is performed in the PL part of the FPGA and
the application part is processed in Python in the PS part, is
considered to be effective. In addition, FPGA processing
speeds are generally faster than those of compiler languages,
even when compared to compiler languages, because FPGAS
are arranged and wired specifically for the target computation
process.

uoneas;d

N
A
E g
8 500
o £
N @
~ % 1000|
e e
Q. >
o 1500]
o
v -
N 2000

Cd

" 32 px (2000 m)

(a) Elevation data

500

1000}

Y -axis [m]

1500}

2000

2000 1500 1000 5S00
X -axis [m]

(d) Output from this system

2000 1500 1000 500
X -axis [m]

(b) Output model (from top)

¥.. 1000 e
3
o 1500 1500

0 +

2000 2000

(¢) Output model (from diagonal)

=4
s 500
E
"))
% 1000
®
>
1500]
2000]
2000 1500 1000 500 0
X -axis [m]
(e) Output from Python

Fig. 15. Output results of hazard map for landslides

V. OUTPUT RESULTS

This section discusses some of the output results obtained
when this system is run and their contents. Figure 15 shows
the results of learning a hazard map for a landslide disaster,
running the circuit implemented in FPGA, and outputting the
map as a 3D model. The figure shows the elevation data input
to the circuit, the output results from the circuit created, and a

comparison between them and the simulation results in Python.

The areas painted red on the hazard map represent danger
zones. These areas are where output greater than 0 was
obtained after the autoencoder calculation and after passing
the ReLU function. Observation of the output model shows
that the hazardous area extends laterally around the slope of
the cliff. In such geographic features, landslides may occur on
the slopes. When the output model is viewed as a 3D model
from an angle, the hazardous areas can be identified more
clearly. Comparing the results of arithmetic processing in
FPGA with the results of simulation in Python, it can be seen
that the output results are generally equivalent. However,
when observing the detailed range of the danger zones, errors
arise from the simulations in Python. This is because the
weights and biases used in the creation circuit are not precise
enough, and improvement can be expected by using more
precise data.

VI. CONCLUSION

The design theme of this year's LSI Design Contest was an
auto encoder, and we decided to develop a hazard map system

99

by pursuing practicality and originality in this theme. By
pipelining, parallelizing, and adjusting the circuit size, we
have developed an autoencoder system that infers a hazard
map from geographic features and outputs a 3D model of the
hazard. We are planning to further enhance and select datasets
and to conduct learning that includes information other than
geographic information in order to generate hazard maps with
even higher accuracy. On the other hand, the design of the
circuitry has been made with sufficient resource usage through
various innovations, and we intend to further speed up the
system and make it stand-alone by implementing a learning
circuit and further parallelizing the multiplications.

REFERENCES

THRGTER : TEHHE - RAEAF— Fvv 7
(https://www.city.chiba.jp/other/jf_hazardmap/map.html?lay=saigai_
12)

E g @hds PF— KK~y

(https://disaportal.gsi.go.jp/)

Vivado Design Suite: AXI UV 7 7 L > 2 J 4 K (UG1037)
(https://docs.xilinx.com/v/u/ja-JP/ug1037-vivado-axi-reference-guide)

PYNQ: PYTHON PRODUCTIVITY
(http://www.pyng.io/)

[1]

[2]

[3]
[4]

HoALBC BBV 84HS OB D0’

e

©0CvB

aAVUTAMZEALTOBMEEE:

AWM I EXZERTFBER - BEIFZHENRRERN
LSITH AoV TANERITERLEER

TEL :0948-29-7667
http://www.lsi—contest.com

	
	
	
	
	
	
	
	
	
	
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. PROPOSED ALGORITHM
	Specifications and flow design
	Design Convolutional Neural Network for image compression
	Traning models AI
	Implementation using high-level synthesis by Vitis High level systhesis
	Techniques used in the model
	Optimize fix-pointed representation
	Application of Algorithms in CNN

	CHAPTER 3. FPGA IMPLEMENTATION
	Data Acquisition System Design
	Integrating CNN into the Data Acquisition System
	System deployment
	Design blocks on Vivado
	Build application

	CHAPTER 4. RESULTS
	Python Results
	Verification
	Encoder
	Decoder
	AutoEncoder

	Compare with python
	Implementaion on ZCU104

	CHAPTER 5. CONCLUSIONS AND FUTURE DEVELOPMENT
	TÀI LIỆU THAM KHẢO

	
	
	

	

